

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

Fax: 1.858.481.8694 Email: info@bpsbioscience.com

<u>Data Sheet</u> PARP14 Chemiluminescent Assay Kit

Catalog # 80568 Size: 32 reactions

DESCRIPTION: The *PARP14 Chemiluminescent Activity Assay Kit* is designed to measure PARP14 activity for screening and profiling applications. PARP14 catalyzes NAD-dependent ADP-ribosylation, and PARP14 overexpression in myeloma cells is associated with disease progression and poor survival rates. The PARP14 assay kit comes in a convenient 96-well format, with purified PARP14 enzyme, histone mixture, and PARP assay buffer for 32 enzyme reactions. The key to the *PARP14 Chemiluminescent Activity Assay* is the biotinylated substrate. With this kit, only three simple steps are required for PARP14 reactions. First, histone proteins are coated on a 96-well plate. Next, the biotinylated substrate is incubated with an assay buffer that contains the PARP14 enzyme. Finally, the plate is treated with streptavidin-HRP followed by addition of the HRP substrate to produce chemiluminescence that can then be measured using a chemiluminescence reader.

COMPONENTS:

Catalog #	Reagent	Amount	Storag	ge
80514	PARP14	10 μg	-80°C	
52029	5x histone mixture	1 ml	-80°C	
	Opti-PARP assay mixture	300 µl	-80°C	
	containing biotinylated substrate			Avoid
80602	10x PARP assay buffer	1 ml	-20°C	multiple
79743	Blocking buffer 3	25 ml	+4°C	freeze/
80611	Streptavidin-HRP	100 µl	+4°C	thaw
	HRP chemiluminescent substrate A	6 ml	+4°C	cycles!
	(translucent bottle)			cycles:
	HRP chemiluminescent substrate B	6 ml	+4°C	
	(brown bottle)			
	Max 96-well module plate	1	Room Temp.	

MATERIALS OR INSTRUMENTS REQUIRED BUT NOT SUPPLIED:

1x PBS buffer

PBST buffer (1x PBS, containing 0.05% Tween-20)

Luminometer or fluorescent microplate reader capable of reading chemiluminescence Adjustable micropipettor and sterile tips

Rotating or rocker platform

APPLICATIONS: Great for studying enzyme kinetics and screening small molecular inhibitors for drug discovery and HTS applications.

Fax: 1.858.481.8694
Email: info@bpsbioscience.com

STABILITY: Up to 1 year when stored as recommended.

REFERENCE(S): Brown JA, Marala RB. *J. Pharmacol. Toxicol. Methods* 2002 **47:**137-41.

ASSAY PROTOCOL:

All samples and controls should be tested in duplicate.

Step 1: Coat 50 µl of histone solution to a Max 96-well module

- 1) Dilute **5x histone mixture** 1:5 with PBS.
- 2) Add 50 µl of histone solution to each well and incubate at 4°C overnight.
- 3) Wash the plate three times using 200 µl PBST buffer (1x PBS containing 0.05% Tween-20) per well.
- 4) Tap plate onto clean paper towel to remove liquid.
- 5) Block the wells by adding 200 µl of **Blocking buffer 3** to every well. Incubate at room temperature for 60-90 minutes.
- 6) Wash plate three times with 200 µl PBST buffer as described above.
- 7) Tap plate onto clean paper towel to remove liquid.

Step 2: Ribosylation reaction

- 1) Prepare 1x PARP buffer by adding 1 part of **10x PARP assay buffer** to 9 parts $H_2O(v/v)$
- 2) Thaw **PARP14** enzyme on ice. Upon first thaw, briefly spin tube containing enzyme to recover full content of the tube. Calculate the amount of PARP14 required for the assay and dilute enzyme to 10-15 ng/µl with 1x PARP buffer. Aliquot remaining PARP14 enzyme into single use aliquots. Store remaining undiluted enzyme in aliquots at -80°C. *Note: PARP14 enzyme is very sensitive to freeze/thaw cycles. Avoid multiple freeze/thaw cycles. Do not re-use thawed aliquots or diluted enzyme.*
- 3) Prepare the master mixture: N wells x (2.5 µl **10x PARP buffer** + 2.5 µl **Opti-PARP Assay mixture** + 20 µl water). Add 25 µl to every well.

Fax: 1.858.481.8694 Email: info@bpsbioscience.com

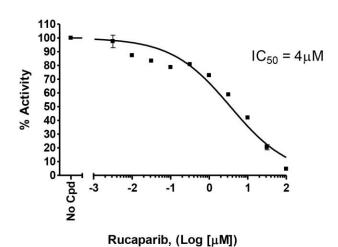
	Positive Control	Test Inhibitor	Blank
10x PARP buffer	2.5 µl	2.5 µl	2.5 µl
Opti-PARP Assay mixture	2.5 µl	2.5 µl	2.5 µl
Water	20 µl	20 µl	20 µl
Test Inhibitor	-	5µl	ı
Inhibitor Buffer (no inhibitor)	5 µl	-	5 µl
1x PARP buffer	-	-	20 µl
PARP14 (10-15 ng/μl)	20 µl	20 µl	
Total	50 µl	50 μl	50 µl

- 4) Add 5 μl of **Inhibitor solution** of each well labeled as "Test Inhibitor". For the "Positive Control" and "Blank", add 5 μl of the same solution without inhibitor (**Inhibitor buffer**). <u>Note</u>: The PARP14 Chemiluminescent Assay Kit is compatible with up to 1% final DMSO concentration. It is recommended to prepare the inhibitor in a 10% DMSO aqueous solution and use 5 μl per PARP14 reaction.
- 5) To the wells designated as "Blank", add 20 µl of 1X PARP buffer.
- 6) Initiate reaction by adding 20 µI of diluted PARP14 enzyme to the wells designated "Positive Control" and "Test Inhibitor Control". Incubate at room temperature for 1 hour.
- 7) Discard the reaction mixture after 1 hour, and wash plate three times with 200 µl PBST buffer and tap plate onto clean paper towel as described above.

Step 3: Detection

- 1) Dilute **Streptavidin-HRP** 1:50 in Blocking buffer 3.
- 2) Add 50 µl of diluted Streptavidin-HRP to each well. Incubate for 30 min. at room temperature.
- 3) Wash three times with 200 µl PBST buffer and tap plate onto clean paper towel as above as described above.
- 4) Just before use, mix on ice 50 μl HRP chemiluminescent substrate A and 50 μl HRP chemiluminescent substrate B and add 100 μl per well.
- Immediately read the plate in a luminometer or microtiter-plate reader capable of reading chemiluminescence. The "Blank" value is subtracted from all other values.

Reading Chemiluminescence:


Fax: 1.858.481.8694 Email: info@bpsbioscience.com

Chemiluminescence is the emission of light (luminescence) which results from a chemical reaction. The detection of chemiluminescence requires no wavenlength selection because the method used is emission photometry and is not emission spectrophotometry.

To properly read chemiluminescence, make sure the plate reader is set for LUMINESCENCE mode. Typical integration time is 1 second, delay after plate movement is 100 msec. Do not use a filter when measuring light emission. Typical settings for the Synergy 2 BioTek plate reader are: use the "hole" position on the filter wheel; Optics position: Top; Read type: endpoint. Sensitivity may be adjusted based on the luminescence of a control assay without enzyme (typically we set this value as 100).

Example of Assay Results:

PARP14 Activity

PARP14 activity, measured using the *PARP14 Chemiluminescent Activity Assay Kit*, BPS Bioscience Cat. # 80568. Luminescence was measured using a Bio-Tek microplate reader. *Data shown is lot-specific. For lot-specific information, please contact BPS Bioscience, Inc. at info@bpsbioscience.com*

6042 Cornerstone Court W, Ste B San Diego, CA 92121

Tel: 1.858.202.1401 Fax: 1.858.481.8694 Email: info@bpsbioscience.com

RELATED PRODUCTS:

Product Name	Catalog #	<u>Size</u>
PARP1 Assay Kit	80551	96 rxns.
PARP2 Assay Kit	80552	96 rxns.
PARP3 Assay Kit	80553	96 rxns.
PARP5A (TNKS1) Assay Kit	80573	96 rxns.
PARP5B (TNKS2) Assay Kit	80579	96 rxns.
PARP6 Assay Kit	80556	32 rxns.
PARP7 Assay Kit	80557	96 rxns.
PARP10 Assay Kit	80560	96 rxns.
PARP11 Assay Kit	80561	96 rxns.
PARP15 Assay Kit	80567	96 rxns.
PARP1 Enzyme	80501	10 μg
PARP2 Enzyme	80502	10 μg
PARP3 Enzyme	80503	10 μg
TNKS2 (PARP5A) Enzyme	80504	10 μg
TNKS2 (PARP5B) Enzyme	80505	10 μg
PARP6 Enzyme	80506	10 μg
PARP7 Enzyme	80507	10 μg
PARP9 Enzyme	80509	10 μg
PARP10 Enzyme	80510	10 μg
PARP12 Enzyme	80512	10 μg
PARP14 Enzyme	80514	10 μg
PARP15 Enzyme	80517	10 μg

Fax: 1.858.481.8694
Email: info@bpsbioscience.com

TROUBLESHOOTING GUIDE

Problem Pageible Course		0.1.4	
Problem	Possible Cause	Solution	
Luminescence signal of	PARP14 enzyme has	Enzyme loses activity upon repeated	
positive control reaction is	lost activity	freeze/thaw cycles. Use fresh enzyme	
weak		(PARP14, BPS Bioscience #80514).	
		Store enzyme in single-use aliquots.	
		Increase time of enzyme incubation.	
		Increase enzyme concentration.	
	Incorrect settings on	Refer to instrument instructions for	
	instruments	settings to increase sensitivity of light	
		detection. See section on "Reading	
		Chemiluminescence" above.	
	Chemiluminescent	Chemiluminescent solution should be	
	reagents mixed too	used within 15 minutes of mixing.	
	soon	Ensure both reagents are properly	
		mixed.	
Luminescent signal is	Inaccurate	Run duplicates of all reactions.	
erratic or varies widely	pipetting/technique	Use a multichannel pipettor.	
among wells		Use master mixes to minimize errors.	
	Bubbles in wells	Pipette slowly to avoid bubble	
		formation. Tap plate lightly to disperse	
		bubbles; be careful not to splash	
		between wells.	
Background (signal to noise	Insufficient washes	Be sure to include blocking steps after	
ratio) is high		wash steps. Increase number of	
, 0		washes. Increase wash volume.	
		Increase Tween-20 concentration to	
		0.1% in TBST.	
	Sample solvent is	Run negative control assay including	
	inhibiting the enzyme	solvent. Maintain DMSO level at <1%	
	,	Increase time of enzyme incubation.	
	Results are outside the	Use different concentrations of	
	linear range of the	enzyme (PARP14, BPS Bioscience	
	assay	#80514) to create a standard curve.	