

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

DATASHEET

RESEARCH USE ONLY www.cellgs.com

PPH159 PODS® Human CXCL12b / SDF-1 β

Description

The product contains the polyhedrin protein co-crystalized with Human CXCL12b. CXCL12, C-X-C motif chemokine 12 (CXCL12), is also known as Stromal cell-derived factor 1 β (SDF1 β). CXCL12 acts as a chemoattractant active on monocytes and T-lymphocytes but not neutrophils. The binding of CXCL12 to CXC receptor 4 (CXCR4) induces intracellular signalling through several divergent pathways which are implicated in chemotaxis, increase in intracellular calcium, cell survival and/or proliferation, and gene transcription. CXCL12 has diverse cellular functions including embryogenesis, tissue homeostasis, immune surveillance, inflammation, and tumour growth and metastasis. During embryogenesis, it is required for B-cell lymphopoiesis, myelopoiesis in bone marrow and heart ventricular septum formation.

Length 93 aa

Molecular Weight 10.6 kDa

Source Spodoptera frugiperda (Sf9) cell culture

Accession Number P48061

Usage Recommendation

PODS® co-crystals provide a depot of proteins which are steadily secreted. It has been estimated that the biological activity of 50 million PODS® co-crystals generates the same peak dose as 3.3 µg of standard recombinant protein. However, at 5 days following the start of seeding the PODS® co-crystals, there are more than 50% of these peak levels still present in the culture system. Ultimately, the amount of PODS® co-crystals that is optimal for a particular experiment should be determined empirically. Based on previous data, we suggest using 50 million PODS® co-crystals in place of 3.3 µg of standard growth factor as a starting point. To control for cross-reactivity with cells or as a negative control, we recommend using PODS® growth factors alongside PODS® Empty crystals, as the latter do not contain or release cargo protein.

Specifications

Alternative SDF1/Stromal cell-derived factor 1

Names

< 0.06 EU/ml as measured by gel clot LAL assay

Endotoxin Level

Formulation

PODS® were lyophilized from a volatile solution

AA Sequence MNAKVVVVLV LVLTALCLSD GKPVSLSYRC PCRFFESHVA RANVKHLKIL NTPNCALQIV ARLKNNNRQV

CIDPKLKWIQ EYLEKALNKR FKM*

Preparation and Storage

Reconstitution PODS® co-crystals may be reconstituted at 200 million co-crystals/ml in sterile PBS. 20% glucose has

a buoyant density closer to PODS® co-crystals and can be useful for aliquoting. PODS® co-crystals

are highly stable when stored in aqueous solution (pH range 6 - 8).

Stability and Storage Upon receipt, store at 4°C. PODS® co-crystals are stable for at least 1 year when dry and 6 months

when resuspended.