

Produktinformation

Forschungsprodukte & Biochemikalien
Zellkultur & Verbrauchsmaterial
Diagnostik & molekulare Diagnostik
Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 F. +43(0)1 489 3961-7 <u>mail@szabo-scandic.com</u> www.szabo-scandic.com

Caspase-6. Mouse Monoclonal Antibody Cysteine-requiring Aspartate Protease-6; Apoptotic protease Mch-2

BACKGROUND

Caspase-6 (Cysteine-Requiring Aspartate Proteases) is part of a family of intracellular cysteine proteases that cleave their substrates after aspartic acid residues. These proteases play an integral role in inducing apoptosis in cells. Procaspase-6 (Mch2), a member of the ICE/ced-3 subfamily, is an inactive proenzyme that is activated to form caspase-6 by proteolytic cleavage at certain aspartic acid residues. During cleavage, the N-terminal is removed and the proenzyme is converted into a large (p18) and small (p11) subunits.

Caspase-6 has two isoforms, α and β , produced by alternative splicing. Over-expression of the α isoform of caspase-6 without its prodomain can induce apoptosis. The β isoform does not seem to display proteolytic activity. Together with caspases-3 and -7, the α isoform of caspase-6 is classified as an effector/execution caspase. Caspase-3, caspase-8 and caspase-10 can cleave procaspase-6. Active caspase-6 cleaves several other proteins such as lamins, NuMa and Keratin 18. A possible cleavage of caspases-8 and -10 in cytochrome-C dependent apoptosis was reported recently.

ORDERING INFORMATION CATALOG NUMBER X1173M SIZE 100 µg FORM Unconjugated HOST/CLONE MOUSE Clone MCH2 14 1-190 FORMULATION Provided as solution in phosphate buffered saline with 0.08% sodium azide CONCENTRATION See vial for concentration

Isoтүре IgG

APPLICATIONS Western Blot

Species Reactivity Human

Accession Number Human P55212

IMMUNOGEN

Hybridoma produced by the fusion of splenocytes from mice immunized with recombinant human capase-6 protein and mouse myeloma cells.

Western blot analysis using caspase-6 antibody on MCF-7 cells negative (-) and positive (+) for caspase-3 after treatment for 48 hours with thapsigargin.

Last Modified 11/1/2012

For research use only. Not for use in human diagnostics or therapeutics.

Exalpha Biologicals, Inc. 2 Shaker Road, Bldg. B101 Shirley, MA 01464 Tel: 800.395.1137 Fax: 866.924.5100 www.exalpha.com info@exalpha.com

Page 1 of 2 Cat. No. X1173M

POSITIVE CONTROL/TISSUE EXPRESSION MCF-7 cell lysate

COMMENTS

Detects proenzyme form of human Caspase-6 by Western blot. Optimal concentration should be evaluated by serial dilutions.

PURIFICATION

Protein A/G Chromatography

SHIP CONDITIONS

Ship at ambient temperature, freeze upon arrival

STORAGE CUSTOMER

Product should be stored at -20°C. Aliquot to avoid freeze/thaw cycles

STABILITY

Products are stable for one year from purchase when stored properly

REFERENCES

1. Kidd, V.J., Proteolytic activities that mediate apoptosis. Annu. Rev. Physiol. 1998, 60, 533-573

2. Fernandes – Alnemri, T., et al., Mch2, a new member of the apoptotic Ced-3/Ice cysteine protease gene family. Cancer Res. 1995, 55, 2737-2742

3. Orth, K., et al., The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J. Biol. Chem. 1996, 271, 16443

4. Hirata, H., et al., Caspases are activated in a branched protease cascade and control distinct downstream processes in Fas-induced apoptosis. J. Exp. Med. 1998, 187, 587-600

5. Slee, E. A., et al., Ordering the cytochrome c-initiated caspase cascade: hierarchial activation of caspases-2, -3, -6, -7, -8 and -10 in a caspase-9-dependent manner. J. Cell Biol., 144, 281 (1999)

6. Cohen, G.M., et al. Caspases: the executioners of apoptosis. Biochem. J. 1997, 326, 1-16

PRODUCT SPECIFIC REFERENCES