

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

Fatty Acid 2-hydrolase (Fa2H). Rabbit Polyclonal Antibody

BACKGROUND

2-Hydroxysphingolipids are a subset of sphingolipids containing 2-hydroxy fatty acids. The 2-hydroxylation occurs during de novo ceramide synthesis and is catalyzed by fatty acid 2-hydroxylase (also known as fatty acid alpha-hydroxylase). In mammals, 2-hydroxysphingolipids are present abundantly in brain because the major myelin lipids galactosylceramides and sulfatides contain 2-hydroxy fatty acids. Here we report identification and characterization of a human gene that encodes a fatty acid 2hydroxylase. Data base searches revealed a human homologue of the yeast ceramide 2-hydroxylase gene (FAH1), which we named FA2H. The FA2H gene encodes a 372-amino acid protein with 36% identity and 46% similarity to yeast Fah1p. The amino acid sequence indicates that FA2H protein contains an N-terminal cytochrome b5 domain and four potential transmembrane domains. FA2H also contains the iron-binding histidine motif conserved among membrane-bound desaturases/hydroxylases. COS7 cells expressing human FA2H contained 3-20-fold higher levels of 2-hydroxyceramides (C16, C18, C24, and C24:1) and 2-hydroxy fatty acids compared with control cells. Microsomal fractions prepared from transfected COS7 cells showed tetracosanoic acid 2-hydroxylase activities in an NADPH- and NADPH: cytochrome P-450 reductase-dependent manner. FA2H lacking the N-terminal cytochrome b5 domain had little activity, indicating that this domain is a functional component of this enzyme. Northern blot analysis showed that the FA2H gene is highly expressed in brain and colon tissues. These results demonstrate that the human FA2H gene encodes a fatty acid 2-hydroxylase. FA2H is likely involved in the formation of myelin 2-hydroxy galactosylceramides and sulfatides.

IMMUNOGEN

Synthetic peptide derived from human fatty acid 2-hydrolase (FA2H) protein.

ORDERING INFORMATION

CATALOG NUMBER

X1698P

SIZE

 $100 \mu g$ **FORM**

Unconjugated

HOST/CLONE

Rabbit

FORMULATION

Provided as solution in phosphate buffered saline with 0.08% sodium azide

CONCENTRATION

See vial for concentration

ISOTYPE

N/A

APPLICATIONS

Western Blot

SPECIES REACTIVITY

Human

ACCESSION NUMBER

Q7L5A8, Human

Positive Control/Tissue Expression

Pancreas

COMMENTS

Antibody can be used for Western blotting (5-10 µg/ml) and ELISA. Other applications no tested. Optimal concentration should be evaluated by serial dilutions.

PURIFICATION

Ammonium Sulfate Precipitation

SHIP CONDITIONS

Ship at ambient temperature, freeze upon arrival

STORAGE CUSTOMER

Product should be stored at -20°C. Aliquot to avoid freeze/thaw cycles

STABILITY

Products are stable for one year from purchase when stored properly

REFERENCES

- 1. Alderson NL, Walla MD, Hama H. A novel method for the measurement of in vitro fatty acid 2-hydroxylase activity by gas chromatography-mass spectrometry. J Lipid Res. 2005 Jul;46(7):1569-75. Epub 2005 May 1.
- 2. Eckhardt M, Yaghootfam A, Fewou SN, Zoller I, Gieselmann V. A mammalian fatty acid hydroxylase responsible for the formation of alpha-hydroxylated galactosylceramide in myelin. Biochem J. 2005 May 15;388(Pt 1):245-54.
- 3. Alderson NL, Rembiesa BM, Walla MD, Bielawska A, Bielawski J, Hama H.The human FA2H gene encodes a fatty acid 2-hydroxylase. J Biol Chem. 2004 Nov 19;279(47):48562-8. Epub 2004 Aug 27.