

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

Proteins

URB937

Cat. No.: HY-116477 CAS No.: 1357160-72-5 Molecular Formula: $C_{20}H_{22}N_{2}O_{4}$

Molecular Weight: 354.4 FAAH Target:

Pathway: Metabolic Enzyme/Protease; Neuronal Signaling

Storage: Powder -20°C 3 years

4°C 2 years -80°C 6 months

In solvent -20°C 1 month

Product Data Sheet

SOLVENT & SOLUBILITY

In Vitro

DMSO: 250 mg/mL (705.42 mM; Need ultrasonic)

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	2.8217 mL	14.1084 mL	28.2167 mL
	5 mM	0.5643 mL	2.8217 mL	5.6433 mL
	10 mM	0.2822 mL	1.4108 mL	2.8217 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.08 mg/mL (5.87 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE- β -CD in saline) Solubility: ≥ 2.08 mg/mL (5.87 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.08 mg/mL (5.87 mM); Clear solution

BIOLOGICAL ACTIVITY

Description	URB937 is an orally active and peripherally restricted FAAH inhibitor (IC ₅₀ =26.8 nM) and increases anandamide levels. URB937 fails to affect FAAH activity in the brain (not penetrate the blood-brain barrier) ^[1] .
IC ₅₀ & Target	IC50: 26.8 nM (FAAH) ^[1] .
In Vitro	URB937 is actively extruded from the CNS by the ATP-binding cassette (ABC) membrane transporter, Abcg2 ^[3] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.

In Vivo

URB937 (1 mg/kg, i.p.) administrated in mice increases anandamide levels in peripheral tissues, but not forebrain or hypothalamus^[1].

URB937 (1 mg/kg, s.c.) suppresses pain responses elicited by i.p. injections of acetic acid $^{[1]}$.

URB937 in male rats (an oral dose 3 mg/kg, F = 36%) is absorbed at a moderate rate and displays a peak plasma concentration (C_{max}) of 159.47 ng/ml, which was achieved one hour after administration. URB937 exhibits $T_{1/2}$ of 60 min by an oral dose of 3 mg/kg^[2].

URB937 produces a high degree of antinociception in female mice and rats in models of visceral and inflammatory pain. Moreover, the compound displayed a restricted access to placental and fetal tissues in pregnant mice and rats^[3]. URB937 (1 mg/kg, every 2 days for 30 days) attenuates radiation-induced lung injury and increased endocannabinoid concentration in lung tissue^[4].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Swiss Webster mice $^{[1]}$.		
Dosage:	1 mg/kg.		
Administration:	S.C.		
Result:	Suppressesd pain responses elicited by i.p. injections of acetic acid.		
Animal Model:	Adult Sprague Dawley male and female rats (250-300 g) ^[2] .		
Dosage:	0.3, 1, 3, 10 mg/kg (Pharmacokinetic Analysis).		
Administration:	Single oral dose.		
Result:	Inhibited liver FAAH activity with a median effective dose (ED_{50}) of 0.9 mg/kg. Inhibits FAAH in peripheral tissues and identify a possible biomarker for target engagement.		

REFERENCES

- [1]. Jason R Clapper, et al. Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism. Nat Neurosci. 2010 Oct;13(10):1265-70.
- [2]. Valentina Vozella, et al. Pharmacokinetics, pharmacodynamics and safety studies on URB937, a peripherally restricted fatty acid amide hydrolase (FAAH) inhibitor, in rats. J Pharm Pharmacol. 2019 Dec;71(12):1762-1773.
- [3]. G Moreno-Sanz, et al. Pharmacological characterization of the peripheral FAAH inhibitor URB937 in female rodents: interaction with the Abcg2 transporter in the blood-placenta barrier. Br J Pharmacol. 2012 Dec;167(8):1620-8.
- [4]. Rui Li, et al. The Fatty Acid Amide Hydrolase Inhibitor URB937 Ameliorates Radiation-Induced Lung Injury in a Mouse Model. Inflammation. 2017 Aug;40(4):1254-1263.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

E-mail: tech@MedChemExpress.com

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA