

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

Product Data Sheet

Conglobatin

 Cat. No.:
 HY-119906

 CAS No.:
 72263-05-9

 Molecular Formula:
 C₂₈H₃₈N₂O₆

 Molecular Weight:
 498.61

Target: HSP; Apoptosis

Pathway: Cell Cycle/DNA Damage; Metabolic Enzyme/Protease; Apoptosis

Storage: Powder -20°C 3 years

In solvent -80°C 6 months

-20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 50 mg/mL (100.28 mM; Need ultrasonic and warming)

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.0056 mL	10.0279 mL	20.0558 mL
	5 mM	0.4011 mL	2.0056 mL	4.0112 mL
	10 mM	0.2006 mL	1.0028 mL	2.0056 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Conglobatin (FW-04-806), a macrolide dilactone, is isolated from the culture of Streptomyces conglobatus. Conglobatin is an orally active Hsp90 inhibitor. Conglobatin can bind to the N-terminal domain of Hsp90 and disrupt Hsp90-Cdc37 complex formation. Conglobatin induces apoptosis in human breast cancer cells and esophageal squamous cell carcinoma cells, and exhibits antitumor activity in vivo^{[1][2][3]}.

IC₅₀ & Target HSP90

In Vitro Conglobatin (6.25-100 μ M; 48 h) markedly inhibits the proliferation of SKBR3 and MCF-7 cells, with IC₅₀s of 12.11 and 39.44 μ M, respectively^[2].

Conglobatin inhibits cell proliferation in EC109, KYSE70, KYSE450, KYSE150, KYSE180, and KYSE510 cells, with IC $_{50}$ s of 16.43, 15.89, 10.94, 10.50, 10.28, and 9.31 μ M, respectively^[3].

Conglobatin (10-40 μ M; 24 h) displays obvious arrest of SKBR3 and MCF-7 cells in the G2/M phase. Conglobatin induces apoptosis through caspase-dependent pathways in SKBR3 and MCF-7 cells^[2].

Conglobatin (10-40 μ M; 3-24 h) reduces Hsp90 client protein levels and induces proteasome-dependent degradation^[2]. Conglobatin binds to the N-terminal of Hsp90, does not affect ATP-binding capability of Hsp90, but inhibits Hsp90/Cdc37 chaperone/co-chaperone interactions^[2].

	2]			
Cell Line:	SKBR3 and MCF-7 cells			
Concentration:	6.25, 12.5, 25, 50, 100 μΜ			
Incubation Time:	48 hours			
Result:	Inhibited the proliferation of SKBR3 and MCF-7 cells in a dose-dependent manner.			
Cell Cycle Analysis ^[2]				
Cell Line:	SKBR3 and MCF-7 cells			
Concentration:	10, 20, 40 μΜ			
Incubation Time:	24 hours			
Result:	Increased the G2/M cell population and decreased the population in the S and G0/G1 phases.			
Western Blot Analysis ^[2]				
Cell Line:	SKBR3 and MCF-7 cells			
Concentration:	10, 20, 40 μΜ			
Incubation Time:	3, 6, 12, 24 hours			
Result:	Decreased the levels of the client proteins HER2, p-HER2, Raf-1, Akt, and p-Akt in a dose and time-dependent manner in SKBR3 cells. Reduced the the levels of the client proteins Raf-1, Akt, and p-Akt in a dose and time-dependent manner in MCF-7 cells.			

In Vivo

Conglobatin (50-200 mg/kg; i.g. q3d for 24 d) inhibits the tumor growth of SKBR3 and MCF-7 human breast cancer xenograft models in a dose-dependent manner $^{[2]}$.

 $\label{lower_conglobation} Conglobatin (4-8 \ mg/kg; i.p. \ daily for 21 \ days) inhibits tumor growth in EC109 \ and \ KYSE510 \ tumor xenograft models with low toxicity $^{[3]}$$

 $\label{eq:mce} \mbox{MCE has not independently confirmed the accuracy of these methods. They are for reference only.}$

Animal Model:	BALB/c (nu/nu) athymic mice with SKBR3 and MCF-7 tumor xenograft ^[2]		
Dosage:	50, 100, 200 mg/kg		
Administration:	Oral gavage every 3 days for 24 days		
Result:	Showed inhibition of tumor growth at a rate of 39.1%, 52.7%, and 67.5% in the SKBR3 cell line groups and 27.3%, 39.8%, 54.3% in the MCF-7 cell line groups at the three increasing doses, respectively. Was well tolerated.		

REFERENCES

[1]. We stley JW, et, al. Conglobatin, a novel macrolide dilactone from Streptomyces conglobatus ATCC 31005. J Antibiot (Tokyo). 1979 Sep; 32(9):874-7.

Page 2 of 3 www.MedChemExpress.com

[2]. Huang W, et, al. FW-04-806 complex formation. Mol Cance		duces apoptosis in human breas	t cancer cells by binding to N-terminu	s of Hsp90 and disrupting Hsp90-Cdc37		
[3]. Li LY, et, al. Macrolide analog F806 suppresses esophageal squamous cell carcinoma (ESCC) by blocking $\beta1$ integrin activation. Oncotarget. 2015 Jun 30;6(18):15940-52.						
	Caution: Product has r	not been fully validated for m	edical applications. For research	use only.		
	Tel: 609-228-6898	Fax: 609-228-5909	E-mail: tech@MedChemExp	ress.com		
	Address: 1	1 Deer Park Dr, Suite Q, Monm	outh Junction, NJ 08852, USA			

Page 3 of 3 www.MedChemExpress.com