

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

Proteins

Bonannione A

Cat. No.: HY-124896 CAS No.: 97126-57-3 Molecular Formula: $C_{25}H_{28}O_{5}$ Molecular Weight: 408.49

Target: Phosphatase; Apoptosis; Autophagy

Pathway: Metabolic Enzyme/Protease; Apoptosis; Autophagy

Please store the product under the recommended conditions in the Certificate of Storage:

Analysis.

Product Data Sheet

BIOLOGICAL ACTIVITY

Description

Bonannione A (6-Geranylnaringenin; Mimulone), a prenylflavonoid, is an orally active and potent protein tyrosine phosphatase 1B (PTP1B) inhibitor with an IC $_{50}$ of 14 μ M. Bonannione A triggers caspase-dependent apoptosis. Bonannione A induces autophagy through p53-mediated AMPK/mTOR pathway. Bonannione A shows anti-inflammatory, antiradical and anti-cancer activity^{[1][2][3]}.

In Vitro

Bonannione A (0-80 μM; 12, 24 hours) significantly inhibits cell proliferation in a dose- and time-dependent way in cancer cell

Bonannione A (0-60 μM; 24 hours) triggers caspase-dependent apoptosis in A549 cells. Bonannione A increases accumulation of cells at the apoptotic sub-G1 phase and the number of cells at G2/M phase^[2].

Bonannione A (60 μM, 24 h) triggers autophagy without impairment of autophagic flux in A549 cells. Bonannione A remarkably reduced p53 levels^[2].

Bonannione A (60 μ M, 0-24 h) remarkably decreased the levels of p53 and phospho-mTOR^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Cell Proliferation Assay^[2]

Cell Line:	Human lung cancer A549, breast cancer MCF-7, colon cancer HCT116 and osteosarcoma U2OS cells
Concentration:	20, 40, 60, 80 μM
Incubation Time:	12, 24 h
Result:	Significantly inhibited cell proliferation in a dose- and time-dependent way in these cancer cell lines.

Apoptosis Analysis^[2]

Cell Line:	A549 cells		
Concentration:	0-60 μM		
Incubation Time:	24 h		
Result:	Annexin V/PI-positive cells were markedly increased in a dose- and time-dependent way. Induced apoptosis through caspase-3 activation and PARP cleavage.		

Cell Cycle Analysis ^[2]				
Cell Line:	A549 cells			
Concentration:	0-60 μΜ			
Incubation Time:	24 h			
Result:	Increased accumulation of cells at the apoptotic sub-G1 phase in a dose-dependent manner. The number of cells at G2/M phase also increased in a dose-dependent manner.			
Cell Autophagy Assay ^[2]				
Cell Line:	A549 cells			
Concentration:	60 μΜ			
Incubation Time:	24 h			
Result:	Remarkably increased ATG7 and LC3-II protein levels in a dose-dependent way, but Beclin-1 level was slightly augmented.			
Western Blot Analysis ^[2]				
Cell Line:	A549 cells			
Concentration:	60 μM			
Incubation Time:	0-24 h			
Result:	Remarkably decreased the levels of p53 and phospho-mTOR. Significantly increased whereas the levels of phospho-AMPK and phospho-Acetyl-CoA Carboxylase (ACC), an AMPK substrate.			

In Vivo

Bonannione A (25 mg/kg; gavage; 48 and 24 h prior to DSS and every 24 h on the following days; for 5days) ameliorates the symptoms of colitis and delayed their onset^[3].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Animal Model:	Male Wistar rats (180-220 g) ^[3]			
Dosage:	25 mg/kg			
Administration:	Gavage; 48 and 24 h prior to DSS (10% (w/v)) and every 24 h on the following days; f 5days			
Result:	Ameliorated the symptoms of colitis and delayed their onset. Showed the low DAI on the last day of the experiment.			

REFERENCES

 $[1].\ Lai-Bin\ Zhang, et\ al.\ Is oprenylated\ Flavonoids\ with\ PTP1B\ Inhibition\ from\ Macaranga\ denticulate.\ Nat\ Prod\ Bioprospect.\ 2016\ Feb; 6(1):25-30.$

[2]. Hyun-Kyu An, et al. Mimulone-induced autophagy through p53-mediated AMPK/mTOR pathway increases caspase-mediated apoptotic cell death in A549 human lung cancer cells. PLoS One. 2014 Dec 9;9(12):e114607.

Page 2 of 3 www.MedChemExpress.com

3]. Zora Vochyánová, et al. Dip	olacone and mimulone amelio	rate dextran sulfate sodium-ind	duced colitis in rats. Fitoterapia. 2015 M	ar;101:201-7.
			edical applications. For research us	
	Tel: 609-228-6898	Fax: 609-228-5909 Deer Park Dr. Suite O. Monmo	E-mail: tech@MedChemExpre outh Junction, NJ 08852, USA	ss.com
	71441 (33. 1)	yeer rank bi, bance Q, monin	outil outiletion, 110 00002, 0071	

Page 3 of 3 www.MedChemExpress.com