Produktinformation Forschungsprodukte & Biochemikalien Zellkultur & Verbrauchsmaterial Diagnostik & molekulare Diagnostik Laborgeräte & Service Weitere Information auf den folgenden Seiten! See the following pages for more information! ## Lieferung & Zahlungsart siehe unsere Liefer- und Versandbedingungen ## Zuschläge - Mindermengenzuschlag - Trockeneiszuschlag - Gefahrgutzuschlag - Expressversand ### SZABO-SCANDIC HandelsgmbH Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 F. +43(0)1 489 3961-7 mail@szabo-scandic.com www.szabo-scandic.com linkedin.com/company/szaboscandic in # MCE ® MedChemExpress ### **Product** Data Sheet ### URAT1/GLUT9-IN-1 Cat. No.: HY-158056 CAS No.: 2883011-18-3 Molecular Formula: C₂₃H₂₁N₃O₂S₂ Molecular Weight: 435.56 Target: GLUT; URAT1 Pathway: Membrane Transporter/Ion Channel Storage: Please store the product under the recommended conditions in the Certificate of Analysis. #### **BIOLOGICAL ACTIVITY** Description URAT1/GLUT9-IN-1(compound 29) can inhibit both uric acid transporter 1(URAT1)(IC $_{50}$ =2.01 μ M) and glucose transporter 9(GLUT9)(IC $_{50}$ =18.21 μ M). URAT1/GLUT9-IN-1 exhibits favorable pharmacokinetic properties and oral bioavailability. URAT1/GLUT9-IN-1 can be uesd for gout and hyperuricemia research^[1]. IC 50 & Target GLUT9 $18.21 \, \mu \text{M (IC}_{50})$ In Vitro URAT1/GLUT9-IN-1 possesses the most effective inhibition of URAT1-mediated 14C-uric acid uptake (IC₅₀= 2.01 μ M), which is about three times more potent than Lesinurad(HY-15258) (IC₅₀= 5.54 μ M)^[1]. URAT1/GLUT9-IN-1 (5 μ M) compares to Benzbromarone(HY-B1135) at a concentration of 5 μ M and demonstrated an IC₅₀ value of 18.21 \pm 1.03 μ M^[1]. URAT1/GLUT9-IN-1 (10 μ M) inhibits to xanthine oxidase(XOD) less than 20%, indicating its negligible inhibitory activity^[1]. URAT1/GLUT9-IN-1 inhibits the inhibitory potential of CYP drug metabolizing enzymes(CYP2C9 (IC₅₀= 2.00 μ M) and CYP2C19 (IC₅₀= 5.93 μ M)) and exhibits a low potential for inducing hepatotoxicity^[1]. $\label{eq:mce} \mbox{MCE has not independently confirmed the accuracy of these methods. They are for reference only.}$ In Vivo URAT1/GLUT9-IN-1 (0.25, 0.5, 1mg/kg, po.) has the smallest effective dose of reduce serum uric acid(SUA) activity is about 0.5 mg/kg in the mouse model of acute hyperuricemia^[1]. URAT1/GLUT9-IN-1 (2mg/kg, po.) exhibits significant potential as a SUA reduction drug, demonstrating approximately 1.8-fold higher potency compared to Lesinurad(HY-15258) in a stable hyperuricemia rat model $^{[1]}$. URAT1/GLUT9-IN-1 (100 mg/kg, po.; every other day for a period of 14 days) displays significantly enhanced safety profiles compared to Lesinurad(HY-15258) in Mice with Chronic Hyperuricemia $^{[1]}$. Pharmacokinetic Analysis in AD rats^[1] | p.o. 2 1813.4 7929.1 2.5 1.8 0.25 1272.7 / 20.1
i.v. 2 1903.7 1922.9 0.5 1.6 0.083 6591.8 17.5 / | Route | Dose
(mg/kg) | AUC _{0_t}
(ng•h/mL) | AUC _{0_INF}
(ng•h/mL) | MRT _{0_INF} (h) | T _{1/2} (h) | T _{max} (h) | C _{max}
(ng/mL) | Cl (L•h/kg) | F (%) | |---|-------|-----------------|---------------------------------|-----------------------------------|--------------------------|----------------------|----------------------|-----------------------------|-------------|-------| | i.v. 2 1903.7 1922.9 0.5 1.6 0.083 6591.8 17.5 / | p.o. | 2 | 1813.4 | 7929.1 | 2.5 | 1.8 | 0.25 | 1272.7 | / | 20.1 | | | i.v. | 2 | 1903.7 | 1922.9 | 0.5 | 1.6 | 0.083 | 6591.8 | 17.5 | / | MCE has not independently confirmed the accuracy of these methods. They are for reference only. | Animal Model: | stable hyperuricemia rat model | | | | | |-----------------|--|--|--|--|--| | Dosage: | 2 mg/kg | | | | | | Administration: | Oral gavage (p.o.) | | | | | | Result: | Had 90.12% titer ratio of decreasing sua activity. | | | | | | | | | | | | | Animal Model: | 14-day model of chronic hyperuricemia | | | | | | Dosage: | | | | | | | Administration: | i.g. | | | | | | Result: | Exhibited superior therapeutic efficacy (76.33%) in chronic hyperuricemia in mice compared to lesinurad (33.56%) | | | | | | | | | | | | | Animal Model: | Healthy Mice | | | | | | Dosage: | 100 mg/kg every other day for a period of 14 days | | | | | | Administration: | Oral gavage (p.o.) | | | | | | Result: | Caused slight weight loss and mild kidney damage. | | | | | ### **REFERENCES** [1]. Shi X, et al. Discovery of a Novel Thienopyrimidine Compound as a Urate Transporter 1 and Glucose Transporter 9 Dual Inhibitor with Improved Efficacy and Favorable Druggability[J]. Journal of Medicinal Chemistry, 2024, 67(6): 5032-5052. Caution: Product has not been fully validated for medical applications. For research use only. Tel: 609-228-6898 Fax: 609-228-5909 $\hbox{E-mail: tech@MedChemExpress.com}$ Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA