

Produktinformation

Forschungsprodukte & Biochemikalien
Zellkultur & Verbrauchsmaterial
Diagnostik & molekulare Diagnostik
Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 F. +43(0)1 489 3961-7 <u>mail@szabo-scandic.com</u> www.szabo-scandic.com

FG 488 DHPE

®

MedChemExpress

Cat. No.:	HY-D1560	
CAS No.:	438476-80-3	~
Molecular Formula:	$C_{58}H_{82}F_{2}NO_{14}P$	
Molecular Weight:	1086.24	
Target:	Fluorescent Dye	PR P
Pathway:	Others	F T F
Storage:	Please store the product under the recommended conditions in the Certificate of Analysis.	но ^{, , , , , , , , , , , , , , , , , , ,}

BIOLOGICAL ACTIVITY		
Description	FG 488 DHPE is a lipid-coupled fluorochrome, has be used as a fluorophore Oregon Green 488. FG 488 DHPE monitors acidification of lipid vesicles with λex/λem=508/534 nm.FG 488 DHPE is also used for Hv1-induced proton translocation quantificatio with λex/λem=508/534 nm as well ^{[1][2]} .	
In Vitro	 FG 488 DHPE shows a pH-dependent fluorescence emission characteristic^[1]. Monitoring acidification in Bulk vesicle assa^[1]: I.Instrument: Jasco FP6500 spectrofluorometer, 37 BØ fluorescence is excited at λex=508 nm and the emission is detected at λem=534 nm. 2.Add 100 µL proteoliposomes (cphospholipid is about 60 µM) to 680 µL ATPase buffer, containing the K+-ionophore valinomycin (5 nM) to enable a charge equilibration for transported protons. 3.Add ATP (1.2 mM) to induce proton pumping. 4.Add 1 mM NaN3 to ATP hydrolysis. 5.Add CCCP (carbonyl cyanide 3-chlorophenyl hydrazine, 0.4 µM) to deplete the proton gradient. 6.Conversion into pH-values, fluorescence intensities are normalized to the intensity obtained directly after ATP addition. FG 488 DHPE exerts function in quantification of pH changes induced by the voltage-dependent proton channel Hv1^[2]. Quantification of phospholipid concentrations^[2]: 1.Add Perchloric acid (70%, 200 µL) to a sample of unilamellar vesicles containing OG488-DHPE (30 µL). 2.Heat up to 220 °C for 60 min to generate inorganic phosphate. 3.Cooling down to room temperature, add 700 µL of a solution of NH₄MoO₄ (0.45% (w/v)) and perchloric acid (12.6% (w/v)) and 700 µL of a 1.7% (w/v) acetic acid solution. 4.Obtain a calibration curve to know NAH₂PO₄ concentrations. 5.Incubated samples at 80 °C for 10 min and measure the absorption of the samples at 820 nm. 6.Calculate phospholipid concentrations of the vesicles using the calibration curve. Proton translocation assay^[2]: 1.Instrument: Jasco FP6500 spectrofluorometer, 37 BØ fluorescence is excited at λex=508 nm (3 nm band width) and the emission is detected at λem=534 nm (3 nm band width). 2.Dilute proteoliposomes composed of POPC/POPG/Chol/OG488-DHPE (54.5:25:20:0.5) in buffer A in flux buffer generating a 14-fold K+-gradient across the ve	

channels as described above.
4.Add CCCP (6 nM) to permeabilise all vesicles for protons.
5. The normalized fluorescence intensity Fnorm is plotted as a function of time. As a control for proton leakage, protein-free
vesicles were used instead of proteoliposomes.
For the experiments in the presence of the potential inhibitor 2GBI, dissolve the inhibitor (15 mM) in flux buffer and add (0.5-
8.0 μL) to the proteoliposomes before addition of valinomycin to induce proton translocation.
MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Schwamborn M, et al. Monitoring ATPase induced pH changes in single proteoliposomes with the lipid-coupled fluorophore Oregon Green 488. Analyst. 2017 Jul 10;142(14):2670-2677.

[2]. Gerdes B, et al. Quantification of Hv1-induced proton translocation by a lipid-coupled Oregon Green 488-based assay. Anal Bioanal Chem. 2018 Oct;410(25):6497-6505.

Caution: Product has not been fully validated for medical applications. For research use only.

 Tel: 609-228-6898
 Fax: 609-228-5909
 E-mail: tech@MedChemExpress.com

 Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA