

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

Product Data Sheet

Rotundine

 Cat. No.:
 HY-N0096

 CAS No.:
 483-14-7

 Molecular Formula:
 C21H25NO4

 Molecular Weight:
 355.43

Target: 5-HT Receptor; Dopamine Receptor

Pathway: GPCR/G Protein; Neuronal Signaling

Storage: Powder

4°C 2 years

3 years

In solvent -80°C 2 years

-20°C

-20°C 1 year

SOLVENT & SOLUBILITY

In Vitro DMSO : ≥ 100 mg/mL (281.35 mM)

H₂O: < 0.1 mg/mL (insoluble)

* "≥" means soluble, but saturation unknown.

Preparing Stock Solutions	Solvent Mass Concentration	1 mg	5 mg	10 mg
	1 mM	2.8135 mL	14.0675 mL	28.1349 mL
	5 mM	0.5627 mL	2.8135 mL	5.6270 mL
	10 mM	0.2813 mL	1.4067 mL	2.8135 mL

Please refer to the solubility information to select the appropriate solvent.

BIOLOGICAL ACTIVITY

Description	Rotundine is an antagonist of dopamine D1, D2 and D3 receptors with IC $_{50}$ s of 166 nM, 1.4 μ M and 3.3 μ M, respectively. Rotundine is also an antagonist of 5-HT $_{1A}$ with an IC $_{50}$ of 370 nM.

It is reported that Rotundine (I-THP) possesses a blocking effect on dopamine D₁ and D2 receptors and can inhibit physical dependence in morphine dependent mice and significantly reduce the development of the conditional place preference induced by morphine in mice. On day 1 and 7, there is no difference in locomotor counts between the Rotundine groups (6.25, 12.5, and 18.75 mg/kg) and saline group [F(3, 37)=1.360, P>0.05, F(3, 37)=0.348, P>0.05, respectively]. Locomotor

counts are greatly increased in the oxycodone group compare with the saline group. Rotundine at doses of 6.25, 12.5, and 18.75 mg/kg antagonizes hyperactivity induced by oxycodone [F(4, 60)=15.76, P<0.01]. Rotundine (6.25, 12.5 mg/kg) does not affect the magnitude of sensitization, but there is a marked difference between oxycodone+oxycodone group and Rotundine

(18.75 mg/kg)+oxycodone+oxycodone group, indicating that Rotundine (18.75 mg/kg) greatly inhibits the development of oxycodone sensitization $[F(4,62)=8.766, P<0.01]^{[2]}$.

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

PROTOCOL

Animal Administration [2]

Kunming mice, initially weighing 18 to 22 g are used in this study. Four groups of mice are given Rotundine (I-THP) (6.25, 12.5, and 18.75 mg/kg) or saline, respectively, once per day for 7 consecutive days, followed by a 5 d withdrawal period. On d 13, all animals are challenged with saline. On day 1, 7, and 13, after 40-min treatment with Rotundine or saline, the mice are put into the test boxes and locomotor activity is monitored for 60 min^[2].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

REFERENCES

[1]. Wang JB, et al. l-tetrahydropalamatine: a potential new medication for the treatment of cocaine addiction. Future Med Chem. 2012 Feb;4(2):177-86.

[2]. Liu YL, et al. Effects of l-tetrahydropalmatine on locomotor sensitization to oxycodone in mice. Acta Pharmacol Sin. 2005 May;26(5):533-8.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: } tech@MedChemExpress.com$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA

Page 2 of 2 www.MedChemExpress.com