

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

Product Data Sheet

(-)-Pinoresinol 4-O-glucoside

Cat. No.:HY-N0946CAS No.:41607-20-9Molecular Formula: $C_{26}H_{32}O_{11}$ Molecular Weight:520.53Target:Glucosidase

Pathway: Metabolic Enzyme/Protease

Storage: Please store the product under the recommended conditions in the Certificate of

Analysis.

BIOLOGICAL ACTIVITY

Description

(-)-Pinoresinol 4-O-glucoside ((-)-Pinoresinol 4-O- β -D-glucopyranoside) is a potent and orally active α -glucosidase inhibitor with an IC $_{50}$ value of 48.13 μ M. (-)-Pinoresinol 4-O-glucoside increases cell migration and early differentiation of preosteoblasts. (-)-Pinoresinol 4-O-glucoside increases protein level of BMP2, p-Smad1/5/8, RUNX2. (-)-Pinoresinol 4-O-glucoside attenuates oxidative stress, hyperglycemia and hepatic toxicity. (-)-Pinoresinol 4-O-glucoside has the potential for the research of osteoporosis and periodontal disease^{[1][2]}.

IC₅₀ & Target

IC50: 48.13 μ M (α -Glucosidase)^[1]

In Vitro

- (-)-Pinoresinol 4-O-glucoside (0, 10, 30 μ M; 24 h) increases cell migration during the differentiation of pre-osteoblasts in osteogenic supplement medium (OS) containing 50 μ g/mL^[1].
- (-)-Pinoresinol 4-O-glucoside (10, 30 μ M; 7 days) increases the early differentiation and increases mineralized nodule formation during differentiation of pre-Osteoblasts^[1].
- $\text{(-)-Pinoresinol 4-O-glucoside (10, 30 } \mu\text{M}; 3 \text{ days) increases the expressio of BMP2, ALP, OCN mRNA levels in pre-osteoblasts} \\ ^{[1]}$
- (-)-Pinoresinol 4-O-glucoside (10, 30 μ M; 3 days) increases protein level of BMP2, p-Smad1/5/8, RUNX2^[1]. MCE has not independently confirmed the accuracy of these methods. They are for reference only.

RT-PCR^[1]

Cell Line:	pre-osteoblasts	
Concentration:	10, 30 μΜ	
Incubation Time:	3 days	
Result:	Upregulated the mRNA level of BMP2 and its target osteoblast genes, ALP and osteocalcin (OCN).	

Western Blot Analysis^[1]

Cell Line:	pre-osteoblasts
Concentration:	10, 30 μΜ
Incubation Time:	3 days

	Result:	Enhanced protein level of BMP2, followed by the phosphorylation of Smad1/5/8 and the expression of RUNX2.	
In Vivo	(-)-Pinoresinol 4-O-glucoside (50 mg/kg; p.o.; twenty days) attenuates oxidative stress, hyperglycaemia and hepatic toxicity in mice ^[2] . MCE has not independently confirmed the accuracy of these methods. They are for reference only.		
	Animal Model:	27-30 g, Male Swiss albino mice ^[2]	
	Dosage:	50 mg/kg	
	Administration:	P.o.; twenty days	
	Result:	Exhibited a hepatoprotective activity in vivo as it lowered AST and ALT levels, caused a prominent decline in serum glucose level by 37.83% in streptozotocin-treated mice with promising elevation in insulin level of 25.37%.	

REFERENCES

[1]. Park KR, et al. Effects of PIN on Osteoblast Differentiation and Matrix Mineralization through Runt-Related Transcription Factor. Int J Mol Sci. 2020 Dec 16;21(24):9579.

[2]. Youssef FS, et al. Pinoresinol-4-O- β -D-glucopyranoside: a lignan from prunes (Prunus domestica) attenuates oxidative stress, hyperglycaemia and hepatic toxicity in vitro and in vivo. J Pharm Pharmacol. 2020 Dec;72(12):1830-1839.

Caution: Product has not been fully validated for medical applications. For research use only.

Tel: 609-228-6898

Fax: 609-228-5909

 $\hbox{E-mail: tech@MedChemExpress.com}$

Address: 1 Deer Park Dr, Suite Q, Monmouth Junction, NJ 08852, USA