

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

Product Data Sheet

trans-Chalcone

Cat. No.: HY-Y0598 CAS No.: 614-47-1 Molecular Formula: $C_{15}H_{12}O$ Molecular Weight: 208.26

Target: Fatty Acid Synthase (FASN); Apoptosis; Fungal

Pathway: Metabolic Enzyme/Protease; Apoptosis; Anti-infection

-20°C Storage: Powder 3 years 4°C 2 years

-80°C In solvent 6 months

> -20°C 1 month

SOLVENT & SOLUBILITY

In Vitro

DMSO: 100 mg/mL (480.17 mM; Need ultrasonic)

	Solvent Mass Concentration	1 mg	5 mg	10 mg
Preparing Stock Solutions	1 mM	4.8017 mL	24.0085 mL	48.0169 mL
	5 mM	0.9603 mL	4.8017 mL	9.6034 mL
	10 mM	0.4802 mL	2.4008 mL	4.8017 mL

Please refer to the solubility information to select the appropriate solvent.

In Vivo

- 1. Add each solvent one by one: 10% DMSO >> 40% PEG300 >> 5% Tween-80 >> 45% saline Solubility: ≥ 2.5 mg/mL (12.00 mM); Clear solution
- 2. Add each solvent one by one: 10% DMSO >> 90% (20% SBE-β-CD in saline) Solubility: ≥ 2.5 mg/mL (12.00 mM); Clear solution
- 3. Add each solvent one by one: 10% DMSO >> 90% corn oil Solubility: ≥ 2.5 mg/mL (12.00 mM); Clear solution

BIOLOGICAL ACTIVITY

Description trans-Chalcone, isolated from Aronia melanocarpa skin, is a biphenolic core structure of flavonoids precursor. trans-Chalcone is a potent fatty acid synthase (FAS) and α -amylase inhibitor. trans-Chalcone causes cellcycle arrest and induces apoptosis in the breastcancer cell line MCF-7. trans-Chalcone has antifungal and anticancer activity $^{[1][2][3]}$. In Vitro

trans-Chalcone competitively inhibits porcine pancreatic α -amylase with a K_i of 48 μ M $^{[2]}$. trans-Chalcone (30.23-98.03 µM; 24 hours) induces cell cycle arrest and apoptosis in MCF-7 cells^[1]. trans-Chalcone (20-80 μM; 24, 48 hours) reduces the expression of the apoptosis-related protein Bcl-2^[1]. trans-Chalcone (58.25 μ M; 6, 24 hours) has greater inhibition of Bcl-2, induction of APAF1 and BAX, and strong induction of CIDEA in 24 hours^[1].

trans-Chalcone (24 hours) inhibits MCF-7 cell viability (IC $_{20}$ =30.23 μ M; IC $_{50}$ =58.25 μ M; IC $_{80}$ =98.03 μ M). trans-Chalcone (48 h) has IC $_{50}$ s of 41.53 μ M and 48.41 μ M for MCF-7 and 3T3 cell lines, respectively. trans-Chalcone exhibits a pronounced cytotoxicity activity [1].

MCE has not independently confirmed the accuracy of these methods. They are for reference only.

Apoptosis Analysis^[1]

Cell Line:	MCF-7 cell	
Concentration:	30.23, 58.25, 98.03 μM	
Incubation Time:	24 hours	
Result:	Induced apoptosis of the breast cancer cell line.	
Cell Cycle Analysis ^[1]		
Cell Line:	MCF-7 cell	
Concentration:	30.23, 58.25, 98.03 μM	
Incubation Time:	24 hours	
Result:	Caused cell cycle arrest in G1.	
Western Blot Analysis ^[1]		
Cell Line:	MCF-7 cell	
Concentration:	20, 40, 80 μM	
Incubation Time:	24, 48 hours	
Result:	Reduced the expression of the apoptosis-related protein Bcl-2 and induced the expression	
	of the CIDEA gene. There was marked degradation of such D1 at 48 h	
RT-PCR ^[1]	There was marked degradation of cyclin D1 at 48 h.	
Cell Line:	MCF-7 cell	
Concentration:	58.25 μM	
Incubation Time:	6, 24 hours	
Result:	Had greater inhibition of Bcl-2, induction of APAF1 and BAX, and strong induction of CIDE in 24 hours.	

REFERENCES

- [1]. Luis Felipe Buso Bortolotto, et al. Cytotoxicity of trans-chalcone and licochalcone A against breast cancer cells is due to apoptosis induction and cell cycle arrest. Biomed Pharmacother. 2017 Jan;85:425-433.
- [2]. Mahmoud Najafian, et al. Trans-chalcone: a novel small molecule inhibitor of mammalian alpha-amylase. Mol Biol Rep. 2011 Mar;38(3):1617-20.
- [3]. Tamires Aparecida Bitencourt, et al. Trans-chalcone and quercetin down-regulate fatty acid synthase gene expression and reduce ergosterol content in the human

Page 2 of 3

pathogenic dermatophyte Trichophyton rubrum. BMC Complement Altern Med. 2013 Sep 17;13:229.							
		not been fully validated for m	nedical applications. For research use only.				
	Tel: 609-228-6898 Address:	Fax: 609-228-5909 : 1 Deer Park Dr, Suite Q, Monm	E-mail: tech@MedChemExpress.com nouth Junction, NJ 08852, USA				

Page 3 of 3 www.MedChemExpress.com