

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

FXR2 (h3): 293T Lysate: sc-117244

The Power to Question

BACKGROUND

Fragile X syndrome is the most frequent form of inherited mental retardation and is the result of transcriptional silencing of the FMR1 gene on the X chromosome. The FMR1 gene contains a distinct CpG dinucleotide repeat located in the 5' untranslated region of the gene, and in the fragile X syndrome, this tandem repeat is substantially amplified and subjected to extensive methylation and enhanced transcriptional silencing. The FMR1 protein (or FMRP) is an RNA-binding protein that associates with polyribosomes and is a likely component of a messenger ribonuclear protein (mRNP) particle. It contains several features that are characteristics of RNA-binding proteins, including two hnRNPK homology (KH) domains and an RGG amino acid motif (RGG box). FMR1 can also interact with two fragile X syndrome related factors, FXR1 and FXR2, and these proteins form heterodimers through their N-terminal coil-coiled domains. It localizes to both the nucleus and the cytoplasm, and since it contains both a nuclear localization signal and a nuclear export signal, it is also implicated in the nucleo-cytoplasmic transport of mRNAs.

REFERENCES

- Verkerk, A.J., Pieretti, M., Sutcliffe, J.S., Fu, Y.H., Kuhl, D.P., Pizzuti, A., Reiner, O., Richards, S., Victoria, M.F., Zhang, F.P., et al. 1991. Identification of a gene (FMR1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65: 905-914.
- Pieretti, M., Zhang, F.P., Fu, Y.H., Warren, S.T., Oostra, B.A., Caskey, C.T. and Nelson, D.L. 1991. Absence of expression of the FMR1 gene in fragile X syndrome. Cell 66: 817-822.
- 3. Matunis, M.J., Michael, W.M. and Dreyfuss, G. 1992. Characterization and primary structure of the poly(C)-binding heterogeneous nuclear ribonucleo-protein complex K protein. Mol. Cell. Biol. 12: 164-171.
- 4. De Boulle, K., Verkerk, A.J., Reyniers, E., Vits, L., Hendrickx, J., Van Roy, B., Van den Bos, F., de Graaff, E., Oostra, B.A. and Willems, P.J. 1993. A point mutation in the FMR1 gene associated with fragile X mental retardation. Nat. Genet. 3: 31-35.
- Zhang, Y., O'Connor, J.P., Siomi, M.C., Srinivasan, S., Dutra, A., Nussbaum, R.L. and Dreyfuss, G. 1995. The fragile X mental retardation syndrome protein interacts with novel homologs FXR1 and FXR2. EMBO J. 14: 5358-5366.
- Eberhart, D.E., Malter, H.E., Feng, Y. and Warren, S.T. 1996. The fragile X mental retardation protein is a ribonucleoprotein containing both nuclear localization and nuclear export signals. Hum. Mol. Genet. 5: 1083-1091.
- Ceman, S., Brown, V. and Warren, S.T. 1999. Isolation of an FMRP-associated messenger ribonucleoprotein particle and identification of nucleolin and the fragile X-related proteins as components of the complex. Mol. Cell. Biol. 19: 7925-7932.
- 8. Tamanini, F., Van Unen, L., Bakker, C., Sacchi, N., Galjaard, H., Oostra, B.A. and Hoogeveen, A.T. 1999. Oligomerization properties of fragile X mental-retardation protein (FMRP) and the fragile X-related proteins FXR1P and FXR2P. Biochem. J. 343: 517-523.

CHROMOSOMAL LOCATION

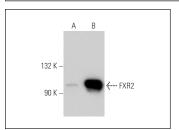
Genetic locus: FXR2 (human) mapping to 17p13.1.

PRODUCT

FXR2 (h3): 293T Lysate represents a lysate of human FXR2 transfected 293T cells and is provided as 100 µg protein in 200 µl SDS-PAGE buffer.

APPLICATIONS

FXR2 (h3): 293T Lysate is suitable as a Western Blotting positive control for human reactive FXR2 antibodies. Recommended use: 10-20 µl per lane.


Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

FXR2 (1G2): sc-32266 is recommended as a positive control antibody for Western Blot analysis of enhanced human FXR2 expression in FXR2 transfected 293 cells (starting dilution 1:100, dilution range 1:100-1:1,000).

RECOMMENDED SUPPORT REAGENTS

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048.

DATA

FXR2 (1G2): sc-32266. Western blot analysis of FXR2 expression in non-transfected: sc-117752 (**A**) and human FXR2 transfected: sc-117244 (**B**) 293T whole cell Ivsates.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com