

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

HSF1 (h): 293T Lysate: sc-171930

The Power to Question

BACKGROUND

Prokaryotic and eukaryotic cells respond to thermal and chemical stress by inducing a group of genes collectively designated heat shock genes. In eukaryotes, this gene expression is regulated primarily at the transcription level. Heat shock transcription factors 1 and 2 (HSF1 and HSF2), also designated HSTF1 and HSTF2, are involved in this regulation. HSF1 and HSF2 are upregulated by estrogen at both the mRNA and protein level. HSF1 is normally found as a monomer, whose transcriptional activity is repressed by constitutive phosphorylation. Upon activation, HSF1 forms trimers, gains DNA binding activity and is translocated to the nucleus. HSF2 activity is associated with differentiation and development and, like HSF1, binds DNA as a trimer. Both HSF1 and HSF2 are known to be induced by proteasome inhibitors of the ubiquitin pathway.

REFERENCES

- 1. Tanguay, R.M. 1988. Transcriptional activation of heat shock genes in eukaryotes. Biochem. Cell Biol. 66: 584-593.
- Yang, X., et al. 1995. Estrogen dependent expression of heat shock transcription factor: implications for uterine synthesis of heat shock proteins.
 J. Steroid Biochem. Mol. Biol. 52: 415-419.
- Wyman, C., et al. 1995. Determination of HSF2 stoichiometry at looped DNA complexes using scanning force microscopy. EMBO J. 14: 117-123.
- Rallu, M., et al. 1997. Function and regulation of HSF2 during mouse embryogenesis. Proc. Natl. Acad. Sci. USA 94: 2392-2397.
- Mathew, A., et al. 1998. Heat shock response and protein degradation: regulation of HSF2 by the ubiquiton-proteasome pathway. Mol. Cell. Biol. 18: 5091-5098.
- He, B., et al. 1998. Glycogen synthase kinase 3b and extracellular signalregulated kinase inactivate HSF1 by facilitating the disappearance of transcriptionally active granules after heat shock. Mol. Cell. Biol. 18: 6624-6633.
- 7. Kawazoe, Y., et al. 1998. Proteasome inhibition leads to the activation of all members of the heat shock factor family. Eur. J. Biochem. 255: 356-362.

CHROMOSOMAL LOCATION

Genetic locus: HSF1 (human) mapping to 8q24.3.

PRODUCT

HSF1 (h): 293T Lysate represents a lysate of human HSF1 transfected 293T cells and is provided as 100 μ g protein in 200 μ l SDS-PAGE buffer.

APPLICATIONS

HSF1 (h): 293T Lysate is suitable as a Western Blotting positive control for human reactive HSF1 antibodies. Recommended use: 10-20 µl per lane.

Control 293T Lysate: sc-117752 is available as a Western Blotting negative control lysate derived from non-transfected 293T cells.

STORAGE

Store at -20° C. Repeated freezing and thawing should be minimized. Sample vial should be boiled once prior to use. Non-hazardous. No MSDS required.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com