Produktinformation Forschungsprodukte & Biochemikalien Zellkultur & Verbrauchsmaterial Diagnostik & molekulare Diagnostik Laborgeräte & Service Weitere Information auf den folgenden Seiten! See the following pages for more information! # Lieferung & Zahlungsart siehe unsere Liefer- und Versandbedingungen # Zuschläge - Mindermengenzuschlag - Trockeneiszuschlag - Gefahrgutzuschlag - Expressversand # SZABO-SCANDIC HandelsgmbH Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 F. +43(0)1 489 3961-7 mail@szabo-scandic.com www.szabo-scandic.com linkedin.com/company/szaboscandic in # **Potassium Chloride** # sc-203207 **Material Safety Data Sheet** LOW Hazard Alert Code Key: **EXTREME HIGH MODERATE** ## Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION #### **PRODUCT NAME** Potassium Chloride #### STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. # **NFPA** #### **SUPPLIER** Company: Santa Cruz Biotechnology, Inc. Company: Santa Cruz Biotechnology, Inc. Address: Address: 2145 Delaware Ave 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: United States of America 877-715-9305 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: From outside the US and Canada: +800 2436 2255 Emergency Tel: ChemWatch (1-800-CHEMCALL) or call +613 9573 3112 Emergency Tel: From within the US and Canada: 877-715-9305 From outside the US and Canada: 800-2436-2255 (1-800- CHEMCALL) Or call 613-9573-3112 # **PRODUCT USE** Fertilizer, source of potassium salts, pharmaceutical preparations, photography, spectroscopy, buffer solutions. Mill addition in porcelain enamels. Substitute for common salt. As Food additive 508. Medically as Slow-K for potassium deficiency. For the treatment and prophylaxis of hypokalemia Available as Technical, Pure, Food and BP grades. #### **SYNONYMS** KCI, "Kay Ciel Elixir", "KCI for refillable electrodes", chloropotassuril, potavescent, "dipotassium dichloride", slow-K, span-K, rekawan, sylvite, "emplets potassium chloride", enseal, "tripotassium trichloride", kalitabs, "potassium monochloride", kaochlor, "Crop King", "Muriate of Potash", kaon-CI, "kaon-CI 10", "kaon-CI tabs", k-lor, klotrix, k-lyte/CI, k-predne-dome, "Food Additive 508", "Product Code: EZ960V", "Pivot Muriate of Potash, ", "Sylvite, ", "Potassium Chloride, Potash", "Merck Potassium chloride AnalaR 10198" # Section 2 - HAZARDS IDENTIFICATION ## CHEMWATCH HAZARD RATINGS | CILINIWATCH HAZARD RATINGS | | | | | | | | | | |----------------------------|---|-----|----------------------|--|--|--|--|--|--| | | | Min | Max | | | | | | | | Flammability: | 0 | | | | | | | | | | Toxicity: | 2 | | Min/Nil=0 | | | | | | | | Body Contact: | 1 | | Low=1 | | | | | | | | Reactivity: | 0 | | Moderate=2
High=3 | | | | | | | | | | | Extreme=4 | | | | | | | #### **CANADIAN WHMIS SYMBOLS** # EMERGENCY OVERVIEW Repeated exposure may cause skin dryness and cracking. #### **POTENTIAL HEALTH EFFECTS** #### **ACUTE HEALTH EFFECTS** #### **SWALLOWED** - Accidental ingestion of the material may be damaging to the health of the individual. - Use as a food additive indicates good tolerance of small amounts, but excessive amounts or overuse may bring irritant and / or harmful effects. - Acute potassium poisoning after swallowing is rare, because vomiting usually occurs and renal excretion is fast. Potassium causes a slow, weak pulse, irregularities in heart rhythm, heart block and an eventual fall in blood pressure. Breathing initially becomes faster but the muscles of breathing eventually become paralyzed. There can be loss of appetite, extreme thirst, increased volumes of urine, fever, convulsions and gastric disturbances; death may then occur due to failure of breathing and inflammation of the stomach and bowel. #### **FYF** ■ Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals. #### SKIN - The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. - Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. - Irritation and skin reactions are possible with sensitive skin. - Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. #### **INHALED** - The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. - Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. # **CHRONIC HEALTH EFFECTS** ■ Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. # NAME CAS RN % potassium chloride 7447-40-7 >99 # **Section 4 - FIRST AID MEASURES** #### **SWALLOWED** - If swallowed do NOT induce vomiting. - If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. - Observe the patient carefully. - Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. - Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. - Seek medical advice. #### **EYE** - If this product comes in contact with the eyes: - Wash out immediately with fresh running water. - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - If pain persists or recurs seek medical attention. - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. #### SKIN - If skin or hair contact occurs: - Flush skin and hair with running water (and soap if available). - Seek medical attention in event of irritation. #### **INHALED** . - If dust is inhaled, remove from contaminated area. - Encourage patient to blow nose to ensure clear breathing passages. - Ask patient to rinse mouth with water but to not drink water. - · Seek immediate medical attention. #### **NOTES TO PHYSICIAN** - For potassium intoxications: - Hyperkalemia, in patients with abnormal renal function, results from reduced renal excretion following intoxication. - The presence of electrocardiographic evidence of hyperkalemia or serum potassium levels exceeding 7.5 mE/L indicates a medical emergency requiring an intravenous line and constant cardiac monitoring. - The intravenous ingestion of 5-10 ml of 10% calcium gluconate, in adults, over a 2 minute period antagonizes the cardiac and neuromuscular effects. The duration of action is approximately 1 hours. [Ellenhorn and Barceloux: Medical Toxicology]. | Section 5 - FIRE FIGHTING MEASURES | | | | | | | | |------------------------------------|----------------|--|--|--|--|--|--| | Vapour Pressure (mmHG): | Not applicable | | | | | | | | Upper Explosive Limit (%): | Not applicable | | | | | | | | Specific Gravity (water=1): | 1.987 | | | | | | | | Lower Explosive Limit (%): | Not applicable | | | | | | | #### **EXTINGUISHING MEDIA** • • There is no restriction on the type of extinguisher which may be used. Use extinguishing media suitable for surrounding area. #### **FIRE FIGHTING** . - Alert Emergency Responders and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves for fire only. - Prevent, by any means available, spillage from entering drains or water course. - Use fire fighting procedures suitable for surrounding area. - Do not approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use. #### GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS - Non combustible. - Not considered to be a significant fire risk, however containers may burn. Decomposition may produce toxic fumes of: hydrogen chloride, metal oxides. May emit poisonous fumes. # FIRE INCOMPATIBILITY ■ None known. #### PERSONAL PROTECTION Glasses: Safety Glasses. Chemical goggles. Gloves: Respirator: Particulate # Section 6 - ACCIDENTAL RELEASE MEASURES #### MINOR SPILLS - • - · Remove all ignition sources. - Clean up all spills immediately. - Avoid contact with skin and eyes. - · Control personal contact by using protective equipment. - Use dry clean up procedures and avoid generating dust. - Place in a suitable, labelled container for waste disposal. #### **MAJOR SPILLS** - Moderate hazard. - CAUTION: Advise personnel in area. - Alert Emergency Responders and tell them location and nature of hazard. - Control personal contact by wearing protective clothing. - Prevent, by any means available, spillage from entering drains or water courses. - Recover product wherever possible. - IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal. - ALWAYS: Wash area down with large amounts of water and prevent runoff into drains. - If contamination of drains or waterways occurs, advise emergency services. #### PROTECTIVE ACTIONS FOR SPILL #### PROTECTIVE ACTION ZONE half evacuation downwind direction distance wind Isolation wind distance down) Distance direction half evacuation downwind direction distance INITIAL ISOLATION ZONE From IERG (Canada/Australia) Isolation Distance Downwind Protection Distance - From US Emergency Response Guide 2000 Guide No guide found. #### **FOOTNOTES** 1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance. 2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects. 3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material. 4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder. 5 Guide No guide found. is taken from the US DOT emergency response guide book. 6 IERG information is derived from CANUTEC - Transport Canada. # ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm) AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure. AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape. AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death. # **Section 7 - HANDLING AND STORAGE** #### PROCEDURE FOR HANDLING - Avoid all personal contact, including inhalation. - · Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - DO NOT allow material to contact humans, exposed food or food utensils. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - · Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Launder contaminated clothing before re-use. - Use good occupational work practice. - Observe manufacturer's storing and handling recommendations. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. #### RECOMMENDED STORAGE METHODS - Glass container. - Polyethylene or polypropylene container. - Check all containers are clearly labelled and free from leaks. #### STORAGE REQUIREMENTS - - - Store in original containers. - Keep containers securely sealed. - Store in a cool, dry, well-ventilated area. - Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - · Observe manufacturer's storing and handling recommendations. #### SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS - X: Must not be stored together - O: May be stored together with specific preventions - +: May be stored together # Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION # **EXPOSURE CONTROLS** | Source | Material | TWA
ppm | TWA
mg/m³ | STEL
ppm | STEL
mg/m³ | Peak
ppm | Peak
mg/m³ | TWA
F/CC | Notes | |---|---|------------|--------------|-------------|---------------|-------------|---------------|-------------|-------| | US - Oregon Permissible Exposure Limits (Z-3) | potassium chloride (Inert or
Nuisance Dust: Total dust) | | 10 | | | | | | (d) | | US OSHA Permissible
Exposure Levels (PELs) -
Table Z3 | potassium chloride (Inert or
Nuisance Dust: (d) Respirable
fraction) | | 5 | | | | | | | | US OSHA Permissible
Exposure Levels (PELs) -
Table Z3 | potassium chloride (Inert or
Nuisance Dust: (d) Total dust) | | 15 | | | | | | | | US - Hawaii Air Contaminant
Limits | potassium chloride
(Particulates not other wise
regulated - Total dust) | | 10 | | | | | | | | US - Hawaii Air Contaminant
Limits | potassium chloride
(Particulates not other wise
regulated - Respirable
fraction) | | 5 | | | | | | | | US - Oregon Permissible
Exposure Limits (Z-3) | potassium chloride (Inert or
Nuisance Dust: Respirable
fraction) | 5 | (d) | |--|---|----|---| | US ACGIH Threshold Limit
Values (TLV) | potassium chloride (Particles
(Insoluble or Poorly Soluble)
[NOS] Inhalable particles) | 10 | See Appendix B
current TLV/BEI
Book | | US - Tennessee Occupational
Exposure Limits - Limits For
Air Contaminants | potassium chloride
(Particulates not otherwise
regulated Respirable fraction) | 5 | | | US - Wyoming Toxic and
Hazardous Substances Table
Z1 Limits for Air Contaminants | potassium chloride
(Particulates not otherwise
regulated (PNOR)(f)-
Respirable fraction) | 5 | | | US - Michigan Exposure Limits for Air Contaminants | potassium chloride
(Particulates not otherwise
regulated, Respirable dust) | 5 | | | Canada - Prince Edward
Island Occupational Exposure
Limits | potassium chloride (Particles
(Insoluble or Poorly Soluble)
[NOS] Inhalable particles) | 10 | See Appendix B current TLV/BEI Book | #### **MATERIAL DATA** POTASSIUM CHLORIDE: ■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace. At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum. NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply. # PERSONAL PROTECTION Consult your EHS staff for recommendations #### **EYE** - _ - Safety glasses with side shields - · Chemical goggles. - Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. #### HANDS/FEET - Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended. - Contaminated gloves should be replaced. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. - polychloroprene - nitrile rubber - butyl rubber - fluorocaoutchouc - polyvinyl chloride Gloves should be examined for wear and/ or degradation constantly. #### **OTHER** - Overalls. - P.V.C. apron. - Barrier cream. - Skin cleansing cream. - Eye wash unit. #### RESPIRATOR - Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory . These may be government mandated or vendor recommended. - Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - Use approved positive flow mask if significant quantities of dust becomes airborne. - Try to avoid creating dust conditions. #### **RESPIRATOR** | _ | | | | |-------------------|----------------------|----------------------|------------------------| | Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | | 10 x PEL | P1 | - | PAPR-P1 | | | Air-line* | - | - | | 50 x PEL | Air-line** | P2 | PAPR-P2 | | 100 x PEL | - | P3 | - | | | | Air-line* | - | | 100+ x PEL | - | Air-line** | PAPR-P3 | ^{* -} Negative pressure demand ** - Continuous flow **Explanation of Respirator Codes:** Class 1 low to medium absorption capacity filters. Class 2 medium absorption capacity filters. Class 3 high absorption capacity filters. PAPR Powered Air Purifying Respirator (positive pressure) cartridge. Type A for use against certain organic gases and vapors. Type AX for use against low boiling point organic compounds (less than 65°C). Type B for use against certain inorganic gases and other acid gases and vapors. Type E for use against sulfur dioxide and other acid gases and vapors. Type K for use against ammonia and organic ammonia derivatives Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica. Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume. Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium. The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required. Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used. ## **ENGINEERING CONTROLS** - Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction. - If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of: (a): particle dust respirators, if necessary, combined with an absorption cartridge; - (b): filter respirators with absorption cartridge or canister of the right type; - (c): fresh-air hoods or masks Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. Type of Contaminant: Air Speed: direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of 1-2.5 m/s (200-500 f/min.) rapid air motion) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air 2.5-10 m/s (500-2000 f/min.) motion). Within each range the appropriate value depends on: Lower end of the range Upper end of the range 1: Room air currents minimal or favorable to capture 1: Disturbing room air currents 2: Contaminants of low toxicity or of nuisance value only. 2: Contaminants of high toxicity 3: Intermittent, low production. 3: High production, heavy use 4: Large hood or large air mass in motion 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### Section 9 - PHYSICAL AND CHEMICAL PROPERTIES #### PHYSICAL PROPERTIES Solid. Mixes with water. | State | Divided solid | Molecular Weight | 74.55 | |---------------------------|-----------------|--------------------------------|----------------| | Melting Range (°F) | 1423.4 | Viscosity | Not Applicable | | Boiling Range (°F) | Sublimes at2732 | Solubility in water (g/L) | Miscible | | Flash Point (°F) | Not Applicable | pH (1% solution) | 7 | | Decomposition Temp (°F) | Sublimes @2732 | pH (as supplied) | Not applicable | | Autoignition Temp (°F) | Not applicable | Vapour Pressure (mmHG) | Not applicable | | Upper Explosive Limit (%) | Not applicable | Specific Gravity (water=1) | 1.987 | | Lower Explosive Limit (%) | Not applicable | Relative Vapor Density (air=1) | Not Applicable | | Volatile Component (%vol) | Not applicable | Evaporation Rate | Not applicable | #### **APPEARANCE** Colourless or white, odourless crystals or crystalline powder with a strong saline taste. Soluble in water (26%), slightly soluble in alcohol. Insoluble in ether and acetone. ## Section 10 - CHEMICAL STABILITY #### CONDITIONS CONTRIBUTING TO INSTABILITY - . - Presence of incompatible materials. - Product is considered stable. - Hazardous polymerization will not occur. #### STORAGE INCOMPATIBILITY ■ Metals and their oxides or salts may react violently with chlorine trifluoride. Chlorine trifluoride is a hypergolic oxidizer. It ignites on contact (without external source of heat or ignition) with recognized fuels - contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition. The state of subdivision may affect the results. For incompatible materials - refer to Section 7 - Handling and Storage. ## Section 11 - TOXICOLOGICAL INFORMATION POTASSIUM CHLORIDE #### **TOXICITY AND IRRITATION** ■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances. TOXICITY IRRITATION Oral (man) LDLo: 20 mg/kg Eye (rabbit): 500 mg/24h - Mild Oral (woman) TDLo: 60 mg/kg Oral (rat) LD50: 2600 mg/kg ■ The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. # **Section 12 - ECOLOGICAL INFORMATION** Refer to data for ingredients, which follows: POTASSIUM CHLORIDE: ■ Although inorganic chloride ions are not normally considered toxic they can exist in effluents at acutely toxic levels (chloride >3000 mg/l). The resulting salinity can exceed the tolerances of most freshwater organisms. galvanic corrosion. It can also increase the rate of pitting corrosion of metal pipes. Inorganic chlorine eventually finds its way into the aqueous compartment and as such is bioavailable. Incidental exposure to inorganic chloride may occur in occupational settings where chemicals management policies are improperly applied. The toxicity of chloride salts depends on the counter-ion (cation) present; that of chloride itself is unknown. Chloride toxicity has not been observed in humans except in the special case of impaired sodium chloride metabolism, e.g. in congestive heart failure. Healthy individuals can tolerate the intake of large quantities of chloride provided that there is a concomitant intake of fresh water. Although excessive intake of drinking-water containing sodium chloride at concentrations above 2.5 g/litre has been reported to produce hypertension, this effect is believed to be related to the sodium ion concentration. Chloride concentrations in excess of about 250 mg/litre can give rise to detectable taste in water, but the threshold depends upon the associated cations. Consumers can, however, become accustomed to concentrations in excess of 250 mg/litre. No health-based guideline value is proposed for chloride in drinking-water. In humans, 88% of chloride is extracellular and contributes to the osmotic activity of body fluids. The electrolyte balance in the body is maintained by adjusting total dietary intake and by excretion via the kidneys and gastrointestinal tract. Chloride is almost completely absorbed in normal individuals, mostly from the proximal half of the small intestine. Normal fluid loss amounts to about 1.5-2 litres/day, together with about 4 g of chloride per day. Most (90 - 95%) is excreted in the urine, with minor amounts in faeces (4-8%) and sweat (2%). Chloride increases the electrical conductivity of water and thus increases its corrosivity. In metal pipes, chloride reacts with metal ions to form soluble salts thus increasing levels of metals in drinking-water. In lead pipes, a protective oxide layer is built up, but chloride enhances ■ DO NOT discharge into sewer or waterways. # **Ecotoxicity** TS8050000 | Ingredient potassium chloride | Persistence: Water/Soil HIGH | | | Persis | tence | : Air | | Bioaccumulation LOW | | | | Mobility
HIGH | | | | | | |---|---|-----|--------|--------|-------|-------|----|---------------------|----|-----|----|------------------|----|-----|-----|----|----| | GESAMP/EHS CO | COMPOSITE LIST - GESAMP Hazard Profiles | | | | | | | | | | | | | | | | | | Name /
Cas No /
RTECS No | EHS | TRN | A1a | A1b | A1 | A2 | B1 | B2 | C1 | C2 | C3 | D1 | D2 | D3 | E1 | E2 | E3 | | E1:_INTER
F~ /
CAS:7447-
40- 7 / | | 1 3 |
51 | 614 | | 0 0 | 0 | Ino
rg | | 1 0 | 0 | (0) | (0 |) - | 0 (| D | 0 | Legend: EHS=EHS Number (EHS=GESAMP Working Group on the Evaluation of the Hazards of Harmful Substances Carried by Ships) NRT=Net Register Tonnage, A1a=Bioaccumulation log Pow, A1b=Bioaccumulation BCF, A1=Bioaccumulation, A2=Biodegradation, B1=Acuteaquatic toxicity LC/ECIC50 (mg/l), B2=Chronic aquatic toxicity NOEC (mg/l), C1=Acute mammalian oral toxicity LD50 (mg/kg), C2=Acutemammalian dermal toxicity LD50 (mg/kg), C3=Acute mammalian inhalation toxicity LC50 (mg/kg), D1=Skin irritation & corrosion, D2=Eye irritation& corrosion, D3=Long-term health effects, E1=Tainting, E2=Physical effects on wildlife & benthic habitats, E3=Interference with coastal amenities, For column A2: R=Readily biodegradable, NR=Not readily biodegradable. For column D3: C=Carcinogen, M=Mutagenic, R=Reprotoxic, S=Sensitising, A=Aspiration hazard, T=Target organ systemic toxicity, L=Lunginjury, N=Neurotoxic, I=Immunotoxic. For column E1: NT=Not tainting (tested), T=Tainting test positive. For column E2: Fp=Persistent floater, F=Floater, S=Sinking substances. The numerical scales start from 0 (no hazard), while higher numbers reflect increasing hazard. (GESAMP/EHS Composite List of Hazard Profiles - Hazard evaluation of substances transported by ships) # **Section 13 - DISPOSAL CONSIDERATIONS** # **Disposal Instructions** All waste must be handled in accordance with local, state and federal regulations. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - Reuse - Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal. - Recycle wherever possible or consult manufacturer for recycling options. - Consult Waste Management Authority for disposal. - Bury residue in an authorized landfill. - Recycle containers where possible, or dispose of in an authorized landfill. # **Section 14 - TRANSPORTATION INFORMATION** NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG ## Section 15 - REGULATORY INFORMATION #### **REGULATIONS** # potassium chloride (CAS: 7447-40-7) is found on the following regulatory lists; "Canada Domestic Substances List (DSL)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (French)", "CODEX General Standard for Food Additives (GSFA) - Additives Permitted for Use in Food in General, Unless Otherwise Specified, in Accordance with GMP", "GESAMP/EHS Composite List - GESAMP Hazard Profiles", "IMO IBC Code Chapter 17: Summary of minimum requirements", "IMO Provisional Categorization of Liquid Substances - List 1: Pure or technically pure products", "International Council of Chemical Associations (ICCA) - High Production Volume List", "OECD Representative List of High Production Volume (HPV) Chemicals", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US EPA High Production Volume Chemicals Additional List", "US Food Additive Database", "US Toxic Substances Control Act (TSCA) - Inventory" # **Section 16 - OTHER INFORMATION** #### LIMITED EVIDENCE - Ingestion may produce health damage*. - Cumulative effects may result following exposure*. - * (limited evidence). Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL. - Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references. - The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. Issue Date: Feb-21-2008 Print Date:Aug-5-2010