

Produktinformation

Forschungsprodukte & Biochemikalien
Zellkultur & Verbrauchsmaterial
Diagnostik & molekulare Diagnostik
Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 F. +43(0)1 489 3961-7 <u>mail@szabo-scandic.com</u> www.szabo-scandic.com

Potassium Phosphate, Monobasic

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800 EMERGENCY ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

KH2PO4, H2-K-O4-P, KH2PO4, "potassium phosphate", "potassium biphosphate", "potassium acid phosphate", "potassium dihydrogen phosphate", "monopotassium phosphate", "Sorensen' s potassium phosphate", MKP, "Ajax UNIVAR", "phosphoric acid, monopotassium salt", "monopotassium dihydrogen phosphate", "Merck 10203, 15318, 29608, 45223, 71309"

CANADIAN WHMIS SYMBOLS

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

Accidental ingestion of the material may be damaging to the health of the individual.

• Acute potassium poisoning after swallowing is rare, because vomiting usually occurs and renal excretion is fast. Potassium causes a slow, weak pulse, irregularities in heart rhythm, heart block and an eventual fall in blood pressure. Breathing initially becomes faster but the muscles of breathing eventually become paralysed. There can be loss of appetite, extreme thirst, increased volumes of urine, fever, convulsions and gastric disturbances; death may then occur due to failure of breathing and inflammation of the stomach and bowel.

• As absorption of phosphates from the bowel is poor, poisoning this way is less likely. Effects can include vomiting, tiredness, fever, diarrhoea, low blood pressure, slow pulse, cyanosis, spasms of the wrist, coma and severe body spasms.

EYE

• There is some evidence to suggest that this material can cause eye irritation and damage in some persons.

Alkaline salts may be intensely irritating to the eyes and precautions should be taken to ensure direct eye contact is avoided.

SKIN

■ The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.

• Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

• The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.

CHRONIC HEALTH EFFECTS

• Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

Sodium phosphate dibasic can cause stones in the kidney, loss of mineral from the bones and loss of thyroid gland function. Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS						
NAME	CAS RN	%				
potassium phosphate, monobasic	7778-77-0	99				

Section 4 - FIRST AID MEASURES

SWALLOWED

- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

EYE

If this product comes in contact with the eyes

- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

If skin or hair contact occurs

- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- If dust is inhaled, remove from contaminated area.
- Encourage patient to blow nose to ensure clear passage of breathing.
- If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

- For potassium intoxications
- Hyperkalaemia, in patients with abnormal renal function, results from reduced renal excretion following intoxication.
- The presence of electrocardiographic evidence of hyperkalemia or serum potassium levels exceeding 7.5 mE/L indicates a medical emergency requiring an intravenous line and constant cardiac monitoring.
- The intravenous ingestion of 5-10 ml of 10% calcium gluconate, in adults, over a 2 minute period antagonises the cardiac and neuromuscular effects. The duration of action is approximately 1 hour. [Ellenhorn and Barceloux Medical Toxicology]

Section 5 - FIRE FIGHTING MEASURES

Vapor Pressure (mmHG)	Not applicable
Upper Explosive Limit (%)	Not applicable
Specific Gravity (water=1)	2.338
Lower Explosive Limit (%)	Not applicable

EXTINGUISHING MEDIA

- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves for fire only.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.
- GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS
- Non combustible.
- Not considered a significant fire risk, however containers may burn.

Decomposition may produce toxic fumes of phosphorus oxides (POx), metal oxides.

May emit poisonous fumes.

May emit corrosive fumes. FIRE INCOMPATIBILITY

None known.

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

Moderate hazard.

- CAUTION Advise personnel in area.
- Alert Emergency Services and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS Wash area down with large amounts of water and prevent runoff into drains.

If contamination of drains or waterways occurs, advise Emergency Services.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- DO NOT use unlined steel containers
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

RECOMMENDED STORAGE METHODS

- Glass container is suitable for laboratory quantities
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

Mildly corrosive to steel and aluminium.

- STORAGE REQUIREMENTS
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
Canada - Ontario Occupational Exposure Limits	potassium phosphate, monobasic (Particles (Insoluble or Poorly Soluble) Not Otherwise)		10 (I)						
Canada - British Columbia Occupational Exposure Limits	potassium phosphate, monobasic (Particles (Insoluble or Poorly Soluble) Not Otherwise Classified (PNOC))		10 (N)						
Canada - Ontario Occupational Exposure Limits	potassium phosphate, monobasic		3 (R)						

	(Specified (PNOS) / Particules (insolubles ou peu solubles) non précisées par ailleurs)			
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	potassium phosphate, monobasic (Particulates not otherwise regulated Respirable fraction)		5	
US - California Permissible Exposure Limits for Chemical Contaminants	potassium phosphate, monobasic (Particulates not otherwise regulated Respirable fraction)		5	(n)
US - Oregon Permissible Exposure Limits (Z-1)	potassium phosphate, monobasic (Particulates not otherwise regulated (PNOR) (f) Total Dust)	-	10	Bold print identifies substances for which the Oregon Permissible Exposure Limits (PELs) are different than the federal Limits. PNOR means "particles not otherwise regulated."
US - Michigan Exposure Limits for Air Contaminants	potassium phosphate, monobasic (Particulates not otherwise regulated, Respirable dust)		5	
US - Oregon Permissible Exposure Limits (Z-1)	potassium phosphate, monobasic (Particulates not otherwise regulated (PNOR) (f) Respirable Fraction)	-	5	Bold print identifies substances for which the Oregon Permissible Exposure Limits (PELs) are different than the federal Limits. PNOR means "particles not otherwise regulated."
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	potassium phosphate, monobasic (Particulates not otherwise regulated (PNOR)(f)-		5	

Respirable fraction)

PERSONAL PROTECTION

RESPIRATOR

Particulate. (AS/NZS 1716 & 1715, EN 1432000 & 1492001, ANSI Z88 or national equivalent)

- EYE
- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

HANDS/FEET

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

ENGINEERING CONTROLS

• Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered.

Such protection might consist of

(a) particle dust respirators, if necessary, combined with an absorption cartridge;

(b) filter respirators with absorption cartridge or canister of the right type;

(c) fresh-air hoods or masks.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant	Air Speed
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on	
Lower end of the range	Upper end of the range
1 Room air currents minimal or favourable to capture	1 Disturbing room air currents
2 Contaminants of low toxicity or of nuisance value only.	2 Contaminants of high toxicity
3 Intermittent, low production.	3 High production, heavy use
4 Large hood or large air mass in motion	4 Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid. Mixes with water.			
State	Divided solid	Molecular Weight	136.1
Melting Range (°F)	487	Viscosity	Not Applicable
Boiling Range (°F)	Not applicable.	Solubility in water (g/L)	Miscible
Flash Point (°F)	Non combustible	pH (1% solution)	4.1-4.5 (5% sol)
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not applicable	Vapor Pressure (mmHG)	Not applicable
Upper Explosive Limit (%)	Not applicable	Specific Gravity (water=1)	2.338
Lower Explosive Limit (%)	Not applicable	Relative Vapor Density (air=1)	Not applicable
Volatile Component (%vol)	Nil.	Evaporation Rate	Not applicable

APPEARANCE

Odorless crystals or granular powder, absorbs moisture from air; mixes with water. Insoluble in alcohol. At 400 C loses water (H20), forming metaphosphate.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- Metals and their oxides or salts may react violently with chlorine trifluoride and bromine trifluoride.
- These trifluorides are hypergolic oxidizers. They ignites on contact (without external source of heat or ignition) with recognised fuels -

contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition.

- The state of subdivision may affect the results.
- Phosphates are incompatible with oxidizing and reducing agents.
- Phosphates are susceptible to formation of highly toxic and flammable phosphine gas in the presence of strong reducing agents such as hydrides.
- Partial oxidation of phosphates by oxidizing agents may result in the release of toxic phosphorus oxides.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

potassium phosphate, monobasic

TOXICITY AND IRRITATION

POTASSIUM PHOSPHATE, MONOBASIC

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY

IRRITATION

Oral (Rat) LD 4640 mg/kg

• No data of toxicological significance identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

No data

Ecotoxicity

Ingredient	Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility
potassium phosphate, monobasic	No Data Available	No Data Available		

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal.
- Bury residue in an authorized landfill.
- Recycle containers if possible, or dispose of in an authorized landfill.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

potassium phosphate, monobasic (CAS: 7778-77-0) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)","Canada Toxicological Index Service - Workplace Hazardous Materials Information System -

WHMIS (English)","US DOE Temporary Emergency Exposure Limits (TEELs)","US FDA CFSAN GRAS Substances evaluated by the Select Committee on GRAS Substances (SCOGS)","US Food Additive Database","US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory","US USDA National Organic Program - Nonagricultural (nonorganic) substances allowed as ingredients in or on processed products labeled as "organic" or "made with organic (specified ingredients or food group(s))""

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Ingestion may produce health damage*.
- Cumulative effects may result following exposure*.
- May produce discomfort of the eyes*.
- * (limited evidence).

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references.

• The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

■ For detailed advice on Personal Protective Equipment, refer to the following U.S. Regulations and Standards:

OSHA Standards - 29 CFR: 1910.132 - Personal Protective Equipment - General requirements 1910.133 - Eye and face protection 1910.134 - Respiratory Protection 1910.136 - Occupational foot protection 1910.138 - Hand Protection Eye and face protection - ANSI Z87.1 Foot protection - ANSI Z41 Respirators must be NIOSH approved.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. <u>www.Chemwatch.net</u>

Issue Date: Sep-10-2007 Print Date:Feb-7-2012