

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

sc-203753

The Power to Questio

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Phloxine B

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and Canada:

877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436 2255

(1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

■ Acid dyes, which are anionic, are used in the textile industry for dyeing of all natural fibres, e.g. wool, cotton, silk and synthetics, e.g. polyesters, acrylic and rayon. To a less extent they are used in a variety of application fields such as in paints, inks, plastics and leather. Fluorescent indicator: Counterstain for collagen, following Mayer's Hemalum. Used with Azure A, as a tissue stain for cell granules, nuclei and micro-organisms. For differential staining of the cells of the anterior pituitary.

SYNONYMS

C20-H2-Br4-Cl4-O5.2Na, "fluorescein, 2' , 4' , 5' , 7' -tetrabromo-4, 5, 6, 7-tetrachloro-, disodium", salt, "fluorescein, 2' , 4' , 5' , 7' -tetrabromo-4, 5, 6, 7-tetrachloro-, disodium", salt, "Aizen Acid Phloxine PB", "C.I. 45410", cyanosin, "D&C Red No. 28", "Eosin Blue", "Food Dye Red No. 105", "Food Red No. 104", "Japan Red 104", "Orient water Pink 2", "Phloxine B, P", 11969, Red, "Red No. 104", "3427 Veri Pur Pink"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

sc-203753

The Power to Question

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

EMERGENCY OVERVIEW RISK

Irritating to eyes and skin. Harmful to aquatic organisms.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

■ The material has NOT been classified as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, unintentional ingestion is not thought to be cause for concern.

EYE

■ This material can cause eye irritation and damage in some persons.

SKIN

- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- Not normally a hazard due to non-volatile nature of product.

CHRONIC HEALTH EFFECTS

■ Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There is some evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Chronic intoxication with ionic bromides, historically, has resulted from medical use of bromides but not from environmental or occupational exposure; depression, hallucinosis, and schizophreniform psychosis can be seen in the absence of other signs of intoxication. Bromides may also induce sedation, irritability, agitation, delirium, memory loss, confusion, disorientation, forgetfulness (aphasias), dysarthria, weakness, fatigue, vertigo, stupor, coma, decreased appetite, nausea and vomiting, diarrhoea, hallucinations, an acne like rash on the face, legs and trunk, known as bronchoderma (seen in 25-30% of case involving bromide ion), and a profuse discharge from the nostrils (coryza). Ataxia and generalised hyperreflexia have also been observed. Correlation of neurologic symptoms with blood levels of bromide is inexact. The use of substances such as brompheniramine, as antihistamines, largely reflect current day usage of bromides; ionic bromides have been largely withdrawn from therapeutic use due to their toxicity. Several cases of foetal abnormalities have been described in mothers who took large doses of bromides during pregnancy.

Exposure to small quantities may induce hypersensitivity reactions characterized by acute bronchospasm, hives (urticaria), deep dermal

sc-203753

The Power to Ownsio

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

wheals (angioneurotic edema), running nose (rhinitis) and blurred vision. Anaphylactic shock and skin rash (non-thrombocytopenic purpura) may occur. An individual may be predisposed to such anti-body mediated reaction if other chemical agents have caused prior sensitization (cross-sensitivity).

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

Section 4 - FIRST AID MEASURES

SWALLOWED

- , v v,-
- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor.

FYF

- If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the
 upper and lower lids.
- If pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- If dust is inhaled, remove from contaminated area.
- Encourage patient to blow nose to ensure clear passage of breathing.
- If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

■ Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG): Not applicable.

sc-203753

Material Safety Data Sheet

The Power to Questio

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW
Upper Explosive Limit (%):	Not available.			
Specific Gravity (water=1):	Not available			
Lower Explosive Limit (%):	Not available.			

EXTINGUISHING MEDIA

.

- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

i

- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen bromide, hydrogen chloride, phosgene, other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

....

- Clean up all spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Sweep up, shovel up or vacuum up (consider explosion-proof machines designed to be grounded during storage and use).

sc-203753

The Power to Question

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

• Place spilled material in clean, dry, sealable, labeled container.

MAJOR SPILLS

- Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

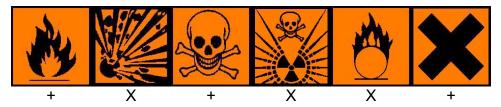
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

sc-203753

Material Safety Data Sheet

The Power to Oscotion


Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

- Glass container.
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA	TWA	STEL	STEL	Peak	Peak	TWA	Notes
110 O B : 111		ppm	mg/m³	ppm	mg/m³	ppm	mg/m³	F/CC	
US - Oregon Permissible Exposure Limits (Z3)	eosin bluish (Inert or Nuisance Dust: (d) Total dust)		10						*
US OSHA Permissible Exposure Levels (PELs) - Table Z3	eosin bluish (Inert or Nuisance Dust: (d) Respirable fraction)		5						
US OSHA Permissible Exposure Levels (PELs) - Table Z3	eosin bluish (Inert or Nuisance Dust: (d) Total dust)		15						
US - Hawaii Air Contaminant Limits	eosin bluish (Particulates not other wise regulated - Total dust)		10						
US - Hawaii Air Contaminant Limits	eosin bluish (Particulates not other wise regulated - Respirable fraction)		5						
US - Oregon Permissible Exposure Limits (Z3)	eosin bluish (Inert or Nuisance Dust: (d) Respirable fraction)		5						*
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	eosin bluish (Particulates not otherwise regulated Respirable fraction)		5						
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	eosin bluish (Particulates not otherwise regulated (PNOR)(f)-Respirable fraction)		5						

sc-203753

Material Safety Data Sheet

The Power to Questio

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW
------------------------	---------	------	----------	-----

US - Michigan Exposure Limits for Air Contaminants

eosin bluish (Particulates not otherwise regulated, Respirable dust)

5

MATERIAL DATA

EOSIN BLUISH:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- cause increased susceptibility to other irritants and infectious agents
- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- _ .
- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

 When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.

sc-203753

Material Safety Data Sheet

The Power in Oscotion

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

_

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These
 may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part
 of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

^{* -} Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

sc-203753

The Power to Question

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW	Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW
--	------------------------	---------	------	----------	-----

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required. Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will

ENGINEERING CONTROLS

_

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a
 certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered.
 Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks
- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Mixes with water.

State	Divided solid	Molecular Weight	829.64
Melting Range (°F)	Not available.	Viscosity	Not Applicable
Boiling Range (°F)	Not applicable.	Solubility in water (g/L)	Miscible

sc-203753

Material Safety Data Sheet

Nil Reported

The Power to Questio

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW
Flash Point (°F)	Not Available	pH (1% s	olution)	Not available
Decomposition Temp (°F)	Not available.	pH (as su	ipplied)	Not applicable
Autoignition Temp (°F)	Not available.	Vapour P	ressure (mmHG)	Not applicable.
Upper Explosive Limit (%)	Not available.	Specific (Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available.	Relative \	Vapor Density (air=1)	Not applicable.
Volatile Component (%vol)	Not applicable.	Evaporat	ion Rate	Not applicable

APPEARANCE

Brick-red powder; mixes with water. No odour.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

■ Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

eosin bluish

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY IRRITATION

Intravenous (mouse) LD50: 310 mg/kg

For fluorescein:

Topical, oral, and intravenous use of fluorescein can cause adverse reactions including nausea, vomiting, hives, acute hypotension, anaphylaxis and related anaphylactoid reaction cardiac arrest, and sudden death.

The most common adverse reaction to fluorescein is nausea, due to a difference in the pH from the body and the pH of the sodium fluorescein dye, however a number of other factors are considered contributors as well. The nausea usually is transient and subsides quickly. Hives can range from a minor annoyance to severe, and a single dose of antihistamine may give complete relief. Anaphylactic shock and subsequent cardiac arrest and sudden death are very rare but because they occur within minutes, a health care provider who uses fluorescein should be prepared to perform emergency resuscitation.

Intravenous use has the most reported adverse reactions, including sudden death, but this may reflect greater use rather than greater risk. Both oral and topical uses have been reported to cause anaphylaxis including one case of anaphylaxis with cardiac arrest following topical use in an eye drop. Reported rates of adverse reactions vary from 1% to 6% The higher rates may reflect study populations that include a higher percentage of persons with prior adverse reactions. The risk of an adverse reaction is 25 times higher if the person has had a prior adverse reaction. The risk can be reduced with prior (prophylactic) use of antihistamines and prompt emergency management of any ensuing anaphylaxis A simple prick test may help to identify persons at greatest risk of adverse reaction

Eosins, fluorescein derivatives may produce skin reactions. Dermatitis due to lipstick containing eosin has been observed. Impurities may be responsible. Eosin is bound to keratin so that patch-testing, with cosmetic preparations suspected of being allergens, may not be conclusive as its ability to provoke the immune system is restricted. Other reports suggest that eosin may cause photosensitivity.

Human lung cell mutagen in vivo

Reproductive effector in rats

CARCINOGEN

sc-203753

The Power to Questio

Hazard Alert Code Key:	EXTREME	HIGH	MODERATE	LOW
BROMINE COMPOUNDS (CINORGANIC)	ORGANIC OR	US Environmental Defense	Scorecard Suspected	Reference(s) P65-MC

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

EOSIN BLUISH:

- Harmful to aquatic organisms.
- for acid dyes:

Ecotoxicity:

Analysis of over 200 acid dyes indicates that some monoacid and diacid dyes show moderate to high toxicity (that is acute values <100 mg/l and < 1 mg/l) to fish and aquatic organisms. Dyes with three of more acid groups show low toxicity (that is acute values >100 mg/l) towards fish and invertebrates. All acid dyes show moderate toxicity towards green algae. The effects on algae were not the result of direct toxicity but represented an indirect effect due to shading.

Algae are generally susceptible to dyes, but the inhibitory effect is thought to be related to light inhibition at high dye concentrations, rather than a direct inhibitory effect of the dyes. This effect may account for up to 50% of the inhibition observed.

Virtually all dyes from all chemically distinct groups are prone to fungal oxidation but there are large differences between fungal species with respect to their catalysing power and dye selectivity. A clear relationship between dye structure and fungal dye biodegradability has not been established. Fungal degradation of aromatic structures is a secondary metabolic event that starts when nutrients (C, N and S) become limiting. Therefore, while the enzymes are optimally expressed under starving conditions, supplementation of energy substrates and nutrients are necessary for propagation of the cultures

Some chelated dyes, i.e., Al, Co, Cr, Fe, have shown moderate toxicity towards fish and daphnids ad the toxicity has not been explained by the residual free (unchelated) metal ion in the dye product.

Environmental fate:

Many dyes are visible in water at concentrations as low as 1 mg/l Textile-processing waste waters, typically with a dye content in the range 10- 200 mg /l are therefore usually highly coloured and discharge in open waters presents an aesthetic problem. As dyes are designed to be chemically and photolytically stable, they are highly persistent in natural environments. It is thus unlikely that they, in general, will give positive results in short-term tests for aerobic biodegradability. The release of dyes may therefore present an ecotoxic hazard and introduces the potential danger of bioaccumulation that may eventually affect man by transport through the food chain

In general the ionic dyes will be almost completely or partly dissociated in an aqueous solution. Solubility in the range 100 mg/l to 80,000 mg/l has been reported for the ionic azo dyes. In addition, they would be expected to have a high to a moderate mobility in soil, sediment and particular matter, indicated by the low Koc values. However, due to their ionic nature, they adsorb as a result of ion-exchange processes.

In addition, ionic compounds are not considered to be able to volatilise neither from moist nor dry surfaces, and the vapour pressures for these dyes are very low.

■ Bromide ion may be introduced to the environment after the dissociation of various salts and complexes or the degradation of organobromide compounds.

Although not a significant toxin in mammalian or avian systems it is highly toxic to rainbow trout and Daphnia magna. Bromides may also affect the growth of micro-organisms and have been used for this purpose in industry.

Bromides in drinking water are occasionally subject to disinfection processes involving ozone of chlorine. Bromide may be oxidised to produce hypobromous acid which in turn may react with natural organic matter to form brominated compounds. The formation of bromoform has been well documented, as has the formation of bromoacetic acids, bromopicrin, cyanogen bromide, and bromoacetone. Bromates may also be formed following ozonation or chlorination if pH is relatively high. Bromates may be animal carcinogens.

■ DO NOT discharge into sewer or waterways.

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling

sc-203753

The Power to Owntie

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

eosin bluish (CAS: 18472-87-2) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)", "US FDA CFSAN Color Additive Status List 2", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.
- May be harmful to the fetus/ embryo*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Dec-9-2009 Print Date:May-21-2010