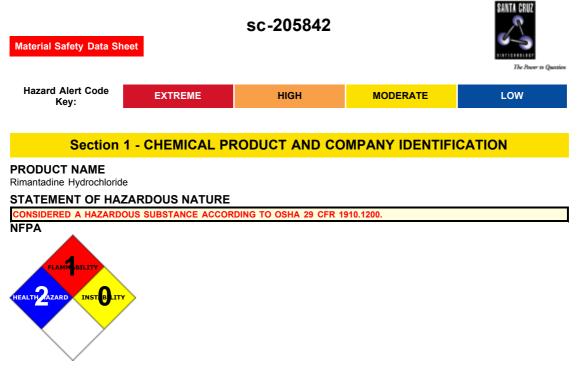


Produktinformation

Forschungsprodukte & Biochemikalien
Zellkultur & Verbrauchsmaterial
Diagnostik & molekulare Diagnostik
Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart siehe unsere Liefer- und Versandbedingungen


Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 F. +43(0)1 489 3961-7 <u>mail@szabo-scandic.com</u> www.szabo-scandic.com

Rimantadine Hydrochloride

SUPPLIER

Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

An anti-viral agent which probably inhibits penetration of the virus into the host cell. Used prophylactically against infection with influenza Type A2 virus.. Rimantadine, like amantadine, possesses some NMDA antagonistic properties and is used as an antiparkinsonic drug (i.e., in the treatment of Parkinson's disease

SYNONYMS

C12-H21-N.HCl, "1-adamantanemethylamine, alpha-methyl-, hydrochloride", "1-adamantanemethylamine, alpha-methyl-, hydrochloride", "adamatane, 1-(aminoethyl)-, hydrochloride", "adamatane, 1-(aminoethyl)-, hydrochloride", "1-(1-aminoethyl)adamantane hydrochloride", "alpha-methyl-1alpha-hydrochloride", hydrochloride", hydrochloride", "ماملة mine "1-(1-"alpha-methyl-1adamantanemethylamine hydrochloride", "alpha-methyl-1-adamantanemethylamine hydrochloride", "alpha-methyltricyclo(3.3.1.1(sup 3, 7))decane-1-methanamine hydrochloride", "alpha-methyltricyclo(3.3.1.1(sup 3, 7))decane-1-methanamine hydrochloride", "tricyclo(3.3.1.1(sup 3, 7))decane-1-methanamine, alpha-methyl-, HCI", "tricyclo(3.3.1.1(sup 3, 7))decane-1-methanamine, alpha-methyl-, HCI", Flumadine, "Exp 126", JP-61, Meradan, Meradane, Remantadin, Roflual, "antiviral agent" "antiviral agent"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW RISK

Harmful if swallowed. Possible risk of impaired fertility. Possible risk of harm to the unborn child. Irritating to eyes, respiratory system and skin.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

 Dopamine receptor antagonists block dopamine receptors. There are five types of dopamine receptor in the human body; these are found in the brain, peripheral nervous system, blood vessels and the kidney. Side effects of antagonism include:

parkinsonism (due to effects on the nigrostriatal pathway),

- hyperprolactinaemia (the presence of abnormally high levels of prolactin in the blood) giving rise to hypo-estrogenism in woman which may produce infertility decrease or loss of menstruation and loss of libido; in men there may be decreased libido, erectile dysfunction and infertility) and
- tardive dyskinesia (generally after long term use or high doses) which describe involuntary, repetitive, purposeless movements signs may manifest in grimacing, tongue protrusion, lip smacking, puckering and pursing of the lips and rapid eye blinking; rapid movements of the extremities may occur with impaired movements of the fingers.

Note parkinsonism is characterised by difficult movement whilst tardive dyskinesia is characterised by difficulty in not moving. EYE

This material can cause eye irritation and damage in some persons.

- SKIN
- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEAL TH EFFECTS

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Ample evidence from experiments exists that there is a suspicionthis material directly reduces fertility. Results in experiments suggest that this material may cause disorders in the development of the embryo or fetus, even when no signs of poisoning show in the mother.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

Section 4 - FIRST AID MEASURES

SWALLOWED

- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
- For advice, contact a Poisons Information Center or a doctor.
- Urgent hospital treatment is likely to be needed.
- If conscious, give water to drink.
- INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- NOTE: Wear a protective glove when inducing vomiting by mechanical means.
- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE

- If this product comes in contact with the eves:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- If pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

For amantadine intoxication:

- If overdose occurs the stomach should be emptied by aspiration and lavage.
- · In particular, symptoms of excessive central stimulation with convulsions and psychosis should be treated appropriately.
- Anti-arrhythmic agents may be required.
- Bladder catherisation may be required.
- · Elimination of amantadine has been reported to be increased in acid urine
- MARTINDALE: The Extra Pharmacopoeia, 27th Ed.
- There is no specific antidote for an overdose of However, slowly administered intravenous physostigmine in 1 and 2 mg doses in an adult at 1- to 2-hour intervals and 0.5 mg doses in a child at 5- to 10-minute intervals up to a maximum of 2 mg/hour have been reported to be effective in the control of central nervous system toxicity caused by amantadine hydrochloride.
- For acute overdosing, general supportive measures should be employed along with immediate gastric lavage or induction of emesis. Fluids should be forced, and if necessary, given intravenously.
- The pH of the urine has been reported to influence the excretion rate of the drug. Since the excretion rate of the drug increases rapidly when the urine is acidic, the administration of urine acidifying drugs may increase the elimination of the drug from the body.
- The blood pressure, pulse, respiration and temperature should be monitored.
- The patient should be observed for hyperactivity and convulsions; if required, sedation, and anticonvulsant therapy should be administered. The patient should be observed for the possible development of arrhythmias and hypotension; if required, appropriate antiarrhythmic and antihypotensive therapy should be given.
 Electrocardiographic monitoring may be required after ingestion, since malignant tachyarrhythmias can appear after
- Electrocardiographic monitoring may be required after ingestion, since malignant tachyarrhythmias can appear after overdose.
- Care should be exercised when administering adrenergic agents, such as isoproterenol, to patients with a drug overdose, since the dopaminergic activity of the drug has been reported to induce malignant arrhythmias.
- The blood electrolytes, urine pH and urinary output should be monitored. If there is no record of recent voiding, catheterisation should be done

RxList for Symmetrel.

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG):	Negligible
Upper Explosive Limit (%):	Not available.
Specific Gravity (water=1):	Not available
Lower Explosive Limit (%):	Not available

EXTINGUISHING MEDIA

- Water spray or fog.
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

FIRE FIGHTING

- -
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- · Use water delivered as a fine spray to control fire and cool adjacent area.
- · DO NOT approach containers suspected to be hot.
- · Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- · Equipment should be thoroughly decontaminated after use

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- •
- Combustible solid which burns but propagates flame with difficulty.
 Avoid generating dust particularly clouds of dust in a confined or unventilated
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- · Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen chloride, phosgene, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes. May emit corrosive fumes.

FIRE INCOMPATIBILITY

• Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses: Chemical goggles. Gloves: Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- - Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping. Place in suitable containers for disposal
- MAJOR SPILLS
- Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure

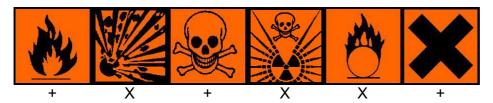
AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
- Do NOT cut, drill, grind or weld such containers
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit


RECOMMENDED STORAGE METHODS

- Glass container.
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together

O: May be stored together with specific preventions

+: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL mg/m³	Peak mg/m³	TWA F/CC	Notes
US - Oregon Permissible Exposure Limits (Z3)	rimantadine hydrochloride (Inert or Nuisance Dust: (d) Total dust)		10				*
US OSHA Permissible Exposure Levels (PELs) - Table Z3	rimantadine hydrochloride (Inert or Nuisance Dust: (d) Respirable fraction)		5				
US OSHA Permissible Exposure Levels (PELs) - Table Z3	rimantadine hydrochloride (Inert or Nuisance Dust: (d) Total dust)		15				
US - Hawaii Air Contaminant Limits	rimantadine hydrochloride (Particulates not other wise regulated - Total dust)		10				
US - Hawaii Air Contaminant Limits	rimantadine hydrochloride (Particulates not other wise regulated - Respirable fraction)		5				
US - Oregon Permissible Exposure Limits (Z3)	rimantadine hydrochloride (Inert or Nuisance Dust: (d) Respirable fraction)		5				*
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	rimantadine hydrochloride (Particulates not otherwise regulated Respirable fraction)		5				
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	rimantadine hydrochloride (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)		5				
US - Michigan Exposure Limits for Air Contaminants	rimantadine hydrochloride (Particulates not otherwise regulated, Respirable dust)		5				

MATERIAL DATA

RIMANTADINE HYDROCHLORIDE:

• Airborne particulate or vapor must be kept to levels as low as is practicably achievable given access to modern engineering controls and monitoring hardware. Biologically active compounds may produce idiosyncratic effects which are entirely unpredictable on the basis of literature searches and prior clinical experience (both recent and past).

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

■ When handling very small quantities of the material eye protection may not be required. For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs:

- Chemical goggles
- Face shield. Full face shield may be required for supplementary but never for primary protection of eyes
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]

HANDS/FEET

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- chemical resistance of glove material, ٠
- glove thickness and
- dexterity
- Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).
- · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time

greater than 240 minutes according to EN 374) is recommended.

When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.

Contaminated gloves should be replaced. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
- Double gloving should be considered.
- PVC gloves.
- Protective shoe covers.
- Head covering.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs. ٠
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eve wash unit.
- Ensure there is ready access to an emergency shower.
- For Emergencies: Vinyl suit
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

* - Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes: Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors. Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume. Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

Enclosed local exhaust ventilation is required at points of dust, fume or vapor generation.

HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors. Barrier protection or laminar flow cabinets should be considered for laboratory scale handling.

The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated. Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated.

Fume-hoods and other open-face containment devices are acceptable when face velocities of at least 1 m/s (200 feet/minute) are achieved. Partitions, barriers, and other partial containment technologies are required to prevent migration of the material to uncontrolled areas. For non-routine emergencies maximum local and general exhaust are necessary. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:

Air Speed:

	aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
	direct spray, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) Within each range the appropriate value depends on:	1-2.5 m/s (200-500 f/min.)
	Lower end of the range	Upper end of the range
	1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
	2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
	3: Intermittent, low production.	3: High production, heavy use
	4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid. Mixes with water.			
State	Divided solid	Molecular Weight	215.77
Melting Range (°F)	703.4- 707	Viscosity	Not Applicable
Boiling Range (°F)	Not available	Solubility in water (g/L)	Miscible
Flash Point (°F)	Not available	pH (1% solution)	Not available
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	Not Applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

White powder; mixes with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

rimantadine hydrochloride

TOXICITY AND IRRITATION

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

 TOXICITY
 IRRITATION

 Oral (rat) LD50: 640 mg/kg
 Nil Reported

 Intraperitoneal (rat) LD50: 135 mg/kg
 Vil Reported

Intraperitoneal (mouse) LD50: 135 mg/kg

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Amantadine (an adamantane or amantane) has been associated with several central nervous system side effects, likely due to amantadine's dopaminergic and adrenergic activity, and to a lesser extent, its activity as an anticholinergic.

Common side-effects associated with amantadine therapy include ankle oedema, nervous excitement, confusion, difficulty in concentration, dizziness, light-headedness, orthostatic hypotension, urinary retention, slurred speech, ataxia, depression, insomnia, lethargy, nausea, anorexia, vomiting, dry mouth, constipation, skin rash, discoloured spots or skin patches (livedo reticularis) and visual disturbances. More serious side-effects may include congestive heart-failure, psychosis and leucopenia.

Dose-related responses include hallucination, feelings of detachment and convulsions.

Deaths have been reported from overdose with amantadine. The lowest reported acute lethal dose was 1 gram. Acute toxicity may be attributable to the anticholinergic effects of amantadine. Drug overdose has resulted in cardiac, respiratory, renal or central nervous system toxicity. Cardiac dysfunction includes arrhythmia, tachycardia and hypertension

Suicide attempts, some of which have been fatal, have been reported in patients treated with amantadine many of whom received short courses for influenza treatment or prophylaxis. The incidence of suicide attempts is not known and the pathophysiologic mechanism is not understood. Suicide attempts and suicidal ideation have been reported in patients with and without prior history of psychiatric illness.

Sporadic cases of possible Neuroleptic Malignant Syndrome (NMS) have been reported in association with dose reduction or withdrawal of the drug. NMS is an uncommon but life-threatening syndrome characterised by fever or hyperthermia; neurologic findings including muscle rigidity, involuntary movements, altered consciousness; mental status changes; other disturbances such as autonomic dysfunction, tachycardia, tachypnea, hyper- or hypotension; laboratory findings such as creatine phosphokinase elevation, leukocytosis, myoglobinuria, and increased serum myoglobin.

Carcinogenicity and mutagenicity: Long-term in vivo animal studies designed to evaluate the carcinogenic potential of amantadine have not been performed. In several in vitro assays for gene mutation, the drug did not increase the number of spontaneously observed mutations in four strains of Salmonella typhimurium (Ames Test) or in a mammalian cell line (Chinese Hamster Ovary cells) when incubations were performed either with or without a liver metabolic activation extract. Further, there was no evidence of chromosome damage observed in an in vitro test using freshly derived and stimulated human peripheral blood lymphocytes (with and without metabolic activation) or in an in vivo mouse bone marrow micronucleus test (140-550

mg/kg; estimated human equivalent does of 11.7-45.8 mg/kg based on body surface area conversion). Reproductive toxicity: In a three litter, non-GLP, reproduction study in rats, amantadine at a dose of 32 mg/kg/day (equal to the maximum recommended human dose on a mg/m2 basis) administered to both males and females slightly impaired fertility. There were no effects on fertility at a dose level of 10 mg/kg/day (or 0.3 times the maximum recommended human dose on a mg/m2 basis); intermediate doses were not tested.

Failed fertility has been reported during human in vitro fertilization (IVF) when the sperm donor ingested amantadine 2 weeks prior to, and during the IVF cycle.

Developmental toxicity: The hydrochloride is embryotoxic and teratogenic in rats at 50 mg/kg/day (about 12 times a recommended human dose). These effects do not occur at 37 mg/kg/day nor do they occur in rabbits.

In two non-GLP studies in rats in which females were dosed from 5 days prior to mating to Day 6 of gestation or on Days 7-14 of gestation, amantadine produced increases in embryonic death at an oral dose of 100 mg/kg (or 3 times the maximum recommended human dose on a mg/m2 basis). In the non-GLP rat study in which females were dosed on Days 7-14 of gestation, there was a marked increase in severe visceral and skeletal malformations at oral doses of 50 and 100 mg/kg (or 1.5 and 3 times, respectively, the maximum recommended human dose on a mg/m2 basis). The no-effect dose for teratogenicity was 37 mg/kg (equal to the maximum recommended human dose on a mg/m2 basis).

Cardiovascular maldevelopment (single ventricle with pulmonary atresia) has been associated with maternal exposure to amantadine (100 mg/d) administered during the first 2 weeks of pregnancy. Change in motor activity, muscle weakness, ataxia, analgaesia recorded.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows: RIMANTADINE HYDROCHLORIDE:

DO NOT discharge into sewer or waterways.

Ecotoxicity

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation rimantadine hydrochloride HIGH LOW

Mobility MED

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waster disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal. Recycle wherever possible.

- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

rimantadine hydrochloride (CAS: 1501-84-4) is found on the following regulatory lists;

"US - Hawaii Air Contaminant Limits", "US - Oregon Permissible Exposure Limits (Z3)", "US OSHA Permissible Exposure Levels (PELs) - Table Z3"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

Cumulative effects may result following exposure*.
 * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

 Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
 A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Oct-18-2009 Print Date:Apr-21-2010