

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

Copper

sc-211129

Material Safety Data Sheet

The Power to Questio

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Copper

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

HEALTH AZARD INST BLITY

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800

EMERGENCY

ChemWatch

Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

Cu, "CI 77400", "C.I. pigment metal 2", "Allbri natural copper foil", "Anac 110 copper gauze turnings ingots", copper-airborne, "copper bronze copper-milled", "gold bronze", "1721 Gold", "Kafar copper", "Raney copper", "copper precipitated powder", "pellets 24/R0395", "Leco Copper Turnings -Part No.: 501-621, 502-258, 502-295", "Merck Copper Foil 0.1mm (Lab) About 1, 1mm Thickness -Product Code 1.02700", "Copper Chips"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

		Min	Max
Flammability:	0		
Toxicity:	2		
Body Contact:	2		Min/Nil=0 Low=1
Reactivity:	2		Moderate=2
Chronic:	2		High=3 Extreme=4

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Harmful to aquatic organisms.

Inhalation may produce health damage*.

Cumulative effects may result following exposure*.

May produce discomfort of the eyes, respiratory tract and skin*.

* (limited evidence).

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Although ingestion is not thought to produce harmful effects (as classified under EC Directives), the material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.
- Not normally a hazard due to the physical form of product. The material is a physical irritant to the gastro-intestinal tract.
- A metallic taste, nausea, vomiting and burning feeling in the upper stomach region occur after ingestion of copper and its derivatives. The vomitus is usually green/blue and discolours contaminated skin. Acute poisonings from ingestion are rare due to their prompt removal by vomiting. Should vomiting not occur or is delayed, systemic poisoning may occur producing kidney and liver damage, wide-spread capillary damage, and be fatal; death may occur after relapse from an apparent recovery. Anaemia may occur in acute poisoning.

EYE

- There is some evidence to suggest that this material can cause eye irritation and damage in some persons.
- Contact with the eye by metal dusts may cause mechanical abrasion or foreign body penetration of the eyeball.
- Copper salts, in contact with the eye, may produce inflammation of the conjunctiva, or even ulceration and cloudiness of the cornea.

SKIN

- Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions.
- There is some evidence to suggest that this material can cause inflammation of the skin on contact in some persons.
- Irritation and skin reactions are possible with sensitive skin.
- Exposure to copper, by skin, has come from its use in pigments, ointments, ornaments, jewellery, dental amalgams and IUDs (intrauterine devices), and in killing fungi and algae. Although copper is used in the treatment of water in swimming pools and reservoirs, there are no reports of toxicity from these applications. Reports of allergic contact dermatitis following contact with copper and its salts have appeared in the literature, however the exposure concentrations leading to any effect have been poorly characterized. In studies, the possible contamination with nickel (which causes allergies definitely) has been raised as a reason for any reactions observed.

INHALED

- Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.
- There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Inhalation hazard is increased at higher temperatures.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

- The inhalation of small particles of metal oxide results in sudden thirst, a sweet, metallic foul taste, throat irritation, cough, dry mucous membranes, tiredness and general unwellness. Headache, nausea and vomiting, fever or chills, restlessness, sweating, diarrhoea, excessive urination and prostration may also occur. After exposure is removed, recovery occurs within 24-36 hours.
- Inhalation of fume may aggravate a pre-existing respiratory condition such as asthma, bronchitis, emphysema.
- Copper poisoning following exposure to copper dusts and fume may result in headache, cold sweat and weak pulse. Capillary, kidney, liver and brain damage are the longer term manifestations of such poisoning. Inhalation of freshly formed metal oxide particles sized below 1.5 microns and generally between 0.02 to 0.05 microns may result in "metal fume fever". Symptoms may be delayed for up to 12 hours and begin with the sudden onset of thirst, and a sweet, metallic or foul taste in the mouth. Other symptoms include upper respiratory tract irritation accompanied by coughing and a dryness of the mucous membranes, lassitude and a generalised feeling of malaise. Mild to severe headache, nausea, occasional vomiting, fever or chills, exaggerated mental activity, profuse sweating, diarrhoea, excessive urination and prostration may also occur. Tolerance to the fumes develops rapidly, but is quickly lost. All symptoms usually subside within 24-36 hours following removal from exposure.

CHRONIC HEALTH EFFECTS

■ Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational

exposure

Copper has fairly low toxicity. Some rare hereditary conditions (Wilson disease or hepatolenticular degeneration) can lead to accumulation of copper on exposure, causing irreversible damage to a variety of organs (liver, kidney, CNS, bone, vision) and lead to death. There may be anaemia and cirrhosis of the liver.

Metallic dusts generated by the industrial process give rise to a number of potential health problems. The larger particles, above 5 micron, are nose and throat irritants. Smaller particles however, may cause lung deterioration. Particles of less than 1.5 micron can be trapped in the lungs and, dependent on the nature of the particle, may give rise to further serious health consequences.

Chronic exposure to copper dusts may result in runny nose, irritation of mucous membranes and atrophic changes with resultant dementia. Pre-existing skin, kidney, liver and pulmonary disorders may be aggravated by acute exposure.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS					
NAME		CAS RN	%		
copper		7440-50-8	>99		

Section 4 - FIRST AID MEASURES

SWALLOWED

- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

EYE

If this product comes in contact with the eyes:

- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
- DO NOT attempt to remove particles attached to or embedded in eye.
- Lay victim down, on stretcher if available and pad BOTH eyes, make sure dressing does not press on the injured eye by placing thick
 pads under dressing, above and below the eye.
- Seek urgent medical assistance, or transport to hospital.

SKIN

If skin contact occurs:

- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

In case of burns:

- Immediately apply cold water to burn either by immersion or wrapping with saturated clean cloth.
- DO NOT remove or cut away clothing over burnt areas. DO NOT pull away clothing which has adhered to the skin as this can cause further injury.
- DO NOT break blister or remove solidified material.
- Quickly cover wound with dressing or clean cloth to help prevent infection and to ease pain.
- For large burns, sheets, towels or pillow slips are ideal; leave holes for eyes, nose and mouth.
- DO NOT apply ointments, oils, butter, etc. to a burn under any circumstances.
- Water may be given in small quantities if the person is conscious.
- Alcohol is not to be given under any circumstances.
- Reassure.
- Treat for shock by keeping the person warm and in a lying position.
- Seek medical aid and advise medical personnel in advance of the cause and extent of the injury and the estimated time of arrival of the patient.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

NOTES TO PHYSICIAN

■ Copper, magnesium, aluminium, antimony, iron, manganese, nickel, zinc (and their compounds) in welding, brazing, galvanising or smelting operations all give rise to thermally produced particulates of smaller dimension than may be produced if the metals are divided mechanically. Where insufficient ventilation or respiratory protection is available these particulates may produce "metal fume fever" in workers from an acute or long term exposure.

- Onset occurs in 4-6 hours generally on the evening following exposure. Tolerance develops in workers but may be lost over the weekend. (Monday Morning Fever)
- Pulmonary function tests may indicate reduced lung volumes, small airway obstruction and decreased carbon monoxide diffusing capacity but these abnormalities resolve after several months.
- Although mildly elevated urinary levels of heavy metal may occur they do not correlate with clinical effects.
- The general approach to treatment is recognition of the disease, supportive care and prevention of exposure.
- Seriously symptomatic patients should receive chest x-rays, have arterial blood gases determined and be observed for the development of tracheobronchitis and pulmonary edema.

[Ellenhorn and Barceloux: Medical Toxicology].

	Section 5 - FIRE FIGHTING MEASURES
Vapor Pressure (mmHg):	0.975 @ 1628 C
Upper Explosive Limit (%):	Not available.
Specific Gravity (water=1):	8.94
Lower Explosive Limit (%):	Not Available

EXTINGUISHING MEDIA

• Do NOT direct a solid stream of water or foam into burning molten material; this may cause spattering and spread the fire.

Metal dust fires need to be smothered with sand, inert dry powders.

DO NOT USE WATER, CO2 or FOAM.

- Use DRY sand, graphite powder, dry sodium chloride based extinguishers, G-1 or Met L-X to smother fire.
- Confining or smothering material is preferable to applying water as chemical reaction may produce flammable and explosive hydrogen gas.
- Chemical reaction with CO2 may produce flammable and explosive methane.
- If impossible to extinguish, withdraw, protect surroundings and allow fire to burn itself out.
- DO NOT use halogenated fire extinguishing agents.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves for fire only.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- DO NOT disturb burning dust. Explosion may result if dust is stirred into a cloud, by providing oxygen to a large surface of hot metal.
- DO NOT use water or foam as generation of explosive hydrogen may result.

With the exception of the metals that burn in contact with air or water (for example, sodium), masses of combustible metals do not represent unusual fire risks because they have the ability to conduct heat away from hot spots so efficiently that the heat of combustion cannot be maintained - this means that it will require a lot of heat to ignite a mass of combustible metal. Generally, metal fire risks exist when sawdust, machine shavings and other metal 'fines' are present.

Metal powders, while generally regarded as non-combustible:

- May burn when metal is finely divided and energy input is high.
- May react explosively with water.
- May be ignited by friction, heat, sparks or flame.
- May REIGNITE after fire is extinguished.
- Will burn with intense heat.

Note:

- Metal dust fires are slow moving but intense and difficult to extinguish.
- Containers may explode on heating.
- Dusts or fumes may form explosive mixtures with air.
- Gases generated in fire may be poisonous, corrosive or irritating.
- Hot or burning metals may react violently upon contact with other materials, such as oxidising agents and extinguishing agents used on fires involving ordinary combustibles or flammable liquids.
- Temperatures produced by burning metals can be higher than temperatures generated by burning flammable liquids
- Some metals can continue to burn in carbon dioxide, nitrogen, water, or steam atmospheres in which ordinary combustibles or flammable liquids would be incapable of burning.

Decomposition may produce toxic fumes of: metal oxides.

May emit poisonous fumes.

May emit corrosive fumes.

CARE: Contamination of heated / molten liquid with water may cause violent steam explosion, with scattering of hot contents.

FIRE INCOMPATIBILITY

Classed as a metal of low activity.

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

Moderate hazard.

- CAUTION: Advise personnel in area.
- Alert Emergency Services and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise Emergency Services.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

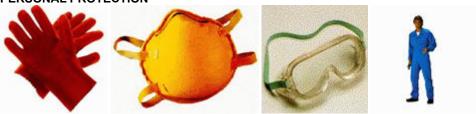
RECOMMENDED STORAGE METHODS

- CARE: Packing of high density product in light weight metal or plastic packages may result in container collapse with product release
- Heavy gauge metal packages / Heavy gauge metal drums
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION


EXPOSURE CONTROLS

Source	Material	TWA	TWA	STEL	STEL	Peak	Peak	TWA	Notos
Source	iviateriai	ppm	mg/m³	ppm	mg/m³	ppm	mg/m³	F/CC	Notes

US ACGIH copper
Threshold Limit (Copper 0.2
Values (TLV) Fume)

TLV® Basis: Irr; GI; metal fume fever

PERSONAL PROTECTION

RESPIRATOR

Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

FYF

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

HANDS/FEET

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Protective gloves eq. Leather gloves or gloves with Leather facing
- When handling hot materials wear heat resistant, elbow length gloves.
- Rubber gloves are not recommended when handling hot objects, materials

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- When handling hot or molten liquids, wear trousers or overalls outside of boots, to avoid spills entering boots.
- Usually handled as molten liquid which requires worker thermal protection and increases hazard of vapour exposure.
- CAUTION: Vapours may be irritating.
- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

ENGINEERING CONTROLS

- Metal dusts must be collected at the source of generation as they are potentially explosive.
- Vacuum cleaners, of flame-proof design, should be used to minimise dust accumulation.
- Metal spraying and blasting should, where possible, be conducted in separate rooms. This minimises the risk of supplying oxygen, in
 the form of metal oxides, to potentially reactive finely divided metals such as aluminium, zinc, magnesium or titanium.

- Work-shops designed for metal spraying should possess smooth walls and a minimum of obstructions, such as ledges, on which
 dust accumulation is possible.
- Wet scrubbers are preferable to dry dust collectors.
- Bag or filter-type collectors should be sited outside the workrooms and be fitted with explosion relief doors.
- Cyclones should be protected against entry of moisture as reactive metal dusts are capable of spontaneous combustion in humid or partially wetted states.
- Local exhaust systems must be designed to provide a minimum capture velocity at the fume source, away from the worker, of 0.5 metre/sec.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
welding, brazing fumes (released at relatively low velocity into moderately still air) Within each range the appropriate value depends on:	0.5-1.0 m/s (100-200 f/min.)
Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Does not mix with water.

Sinks in water.

State	Divided solid	Molecular Weight	63.55
Melting Range (°F)	1981	Viscosity	Not Applicable
Boiling Range (°F)	4215	Solubility in water (g/L)	Immiscible
Flash Point (°F)	Not Applicable	pH (1% solution)	Not applicable.
Decomposition Temp (°F)	Not applicable	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not applicable	Vapor Pressure (mmHg)	0.975 @ 1628 C
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	8.94
Lower Explosive Limit (%)	Not Available	Relative Vapour Density (air=1)	Not Applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not Applicable

APPEARANCE

Metallic solid with high electrical conductivity. Odourless. Insoluble in water. As billets, rod, tube, shapes, turnings, powder. Shapes, drawn tube, sheet may have surface film of forming lubricant. Electrolytic copper is a very pure 99.9% form of the metal.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

STORAGE INCOMPATIBILITY

WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For

example transition metal complexes of alkyl hydroperoxides may decompose explosively.

- The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or
 poly-fluorobenzene show extreme sensitivity to heat and are explosive.
- Avoid reaction with borohydrides or cyanoborohydrides
- Many metals may incandesce, react violently, ignite or react explosively upon addition of concentrated nitric acid.

Metals exhibit varying degrees of activity. Reaction is reduced in the massive form (sheet, rod, or drop), compared with finely divided forms. The less active metals will not burn in air but:

- can react exothermically with oxidising acids to form noxious gases.
- catalyse polymerisation and other reactions, particularly when finely divided
- react with halogenated hydrocarbons (for example, copper dissolves when heated in carbon tetrachloride), sometimes forming explosive compounds.
- Many metals in elemental form react exothermically with compounds having active hydrogen atoms (such as acids and water) to form flammable hydrogen gas and caustic products.
- Elemental metals may react with azo/diazo compounds to form explosive products.
- Some elemental metals form explosive products with halogenated hydrocarbons.
- Metals and their oxides or salts may react violently with chlorine trifluoride and bromine trifluoride.
- These trifluorides are hypergolic oxidisers. They ignites on contact (without external source of heat or ignition) with recognised fuels contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition.
- The state of subdivision may affect the results.
- Reacts with acids producing flammable / explosive hydrogen (H2) gas
- Classed as a metal of low activity.

Avoid contact with acetylene, ammonium nitrate, barium bromate, chlorates and iodates, bromates, phosphorus, potassium chlorate, potassium iodate, potassium peroxide, sodium azide, sodium chlorate and iodate, sodium peroxide, sulfur and chlorates.

The powder forms friction- heat, or shock-sensitive detonator, copper acetylide, with acetylene and acetylene compounds. Potentially violent reactions may occur when finely dispersed powder come in contact with strong oxidisers, alkynes, azides, bromine vapour, calcium carbide, chlorine, ethylene oxide, hydrazine mononitrate, hydrogen peroxide, hydrogen sulfide, finely divided iodine, lead azide, potassium peroxide, sodium peroxide, sulfuric acid. Incompatible with acids, anhydrous ammonia.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

copper

TOXICITY AND IRRITATION

COPPER:

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY	IRRITATION
Oral (human) TDLo: 0.12 mg/kg	Nil Reported
Oral (rat) LD50: 5800 mg/kg	

WARNING: Inhalation of high concentrations of copper

fume may cause "metal

fume fever", an acute industrial disease of short duration. Symptoms are

 $tiredness, influenza \ like \ respiratory \ tract \ irritation \ with \ fever.$

CARCINOGEN

Copper	US EPA Carcinogens Listing	Carcinogenicity	D
copper	US - Rhode Island Hazardous Substance List	IARC	
METALS	US Environmental Defense Scorecard Suspected Carcinogens	Reference(s)	P65-MC

Section 12 - ECOLOGICAL INFORMATION

Harmful to aquatic organisms.

Ecotoxicity

Ingredient	Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility
copper	No Data Available	No Data Available	LOW	

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal.
- Bury residue in an authorised landfill.
- Recycle containers if possible, or dispose of in an authorised landfill.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

copper (CAS: 7440-50-8) is found on the following regulatory lists;

"Canada - Alberta Occupational Exposure Limits", "Canada - British Columbia Occupational Exposure Limits", "Canada - Northwest Territories Occupational Exposure Limits (English)", "Canada - Nova Scotia Occupational Exposure Limits", "Canada - Ontario Occupational Exposure Limits", "Canada - Prince Edward Island Occupational Exposure Limits", "Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)", "Canada - Saskatchewan Industrial Hazardous Substances", "Canada -Saskatchewan Occupational Health and Safety Regulations - Contamination Limits", "Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances", "Canada CEPA Environmental Registry Substance Lists - List of substances on the DSL that meet the human health criteria for categorization (English)", "Canada Domestic Substances List (DSL)", "Canada Environmental Quality Guidelines (EQGs) Water: Aquatic life", "Canada Environmental Quality Guidelines (EQGs) Water: Community", "Canada Ingredient Disclosure List (SOR/88-64)", "Canada National Pollutant Release Inventory (NPRI)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)", "International Maritime Dangerous Goods Requirements (IMDG Code) -Marine Pollutants", "International Maritime Dangerous Goods Requirements (IMDG Code) - Substance Index", "OECD List of High Production Volume (HPV) Chemicals", "OSPAR National List of Candidates for Substitution - Norway", "US - Alaska Limits for Air Contaminants", "US - Arkansas Surface Water Quality Standards Dissolved Metals", "US - California Air Toxics ""Hot Spots"" List (Assembly Bill 2588) Substances for Which Emissions Must Be Quantified". "US - California Environmental Health Standards for the Management of Hazardous Waste - List of Inorganic Persistent and Bioaccumulative Toxic Substances and Their STLC & TTLC Values", "US - California Occupational Safety and Health Regulations (CAL/OSHA) - Hazardous Substances List", "US - California OEHHA/ARB -Acute Reference Exposure Levels and Target Organs (RELs)", "US - California Permissible Exposure Limits for Chemical Contaminants", "US - California Toxic Air Contaminant List Category II", "US - Connecticut Hazardous Air Pollutants", "US - Delaware Pollutant Discharge Requirements - Reportable Quantities", "US - Hawaii Air Contaminant Limits", "US - Idaho - Limits for Air Contaminants", "US - Louisiana Minimum Emission Rates Toxic Air Pollutants", "US - Louisiana Toxic Air Pollutant Ambient Air Standards", "US - Massachusetts Drinking Water - Secondary Contaminants Maximum Contaminant Levels (MCLs)", "US -Massachusetts Oil & Hazardous Material List", "US - Michigan Exposure Limits for Air Contaminants", "US - Minnesota Hazardous Substance List", "US - Minnesota Permissible Exposure Limits (PELs)", "US - New Jersey Right to Know Hazardous Substances (English)", "US - North Dakota Air Pollutants - Guideline Concentrations", "US - Oregon Permissible Exposure Limits (Z-1)", "US -Pennsylvania - Hazardous Substance List", "US - Rhode Island Hazardous Substance List", "US - South Dakota Drinking Water Standards - Inorganic Chemicals", "US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants", "US - Utah Secondary Drinking Water Standards - Inorganic Contaminants", "US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants", "US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants", "US - Washington Permissible exposure limits of air contaminants", "US - Washington Toxic air pollutants and their ASIL, SQER and de minimis emission values", "US - Wisconsin Control of Hazardous Pollutants - Emission Thresholds, Standards and Control Requirements (Hazardous Air Contaminants)", "US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants", "US ACGIH Threshold Limit Values (TLV)", "US American Apparel & Footwear Association (AAFA) Restricted Substance List (RSL)", "US ATSDR Minimal Risk Levels for Hazardous Substances (MRLs)", "US ATSDR Priority List of Hazardous Substances", "US CWA (Clean Water Act) - Priority Pollutants", "US CWA (Clean Water Act) - Toxic Pollutants", "US Department of Transportation (DOT) List of Hazardous Substances and

Reportable Quantities - Hazardous Substances Other Than Radionuclides", "US Department of Transportation (DOT) Marine Pollutants - Appendix B", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US EPA Carcinogens Listing", "US EPA National Priorities List - Superfund Chemical Data Matrix (SCDM) - Hazard Ranking System - Hazardous Substance Benchmarks", "US EPCRA Section 313 Chemical List", "US FDA CFSAN Color Additive Status List 6", "US FDA Listing of Color Additives Exempt from Certification - Cosmetics", "US FDA Listing of Color Additives Exempt from Certification - Drugs", "US List of Lists - Consolidated List of Chemicals Subject to EPCRA, CERCLA and Section 112(r) of the Clean Air Act", "US NIOSH Recommended Exposure Limits (RELs)", "US OSHA Permissible Exposure Levels (PELs) - Table Z1", "US RCRA (Resource Conservation & Recovery Act) - Appendix IX to Part 264 Ground-Water Monitoring List 1", "US RCRA (Resource Conservation & Recovery Act) - List of Hazardous Inorganic and Organic Constituents 1", "US -Texas Air Monitoring Comparison Values for Evaluating Metals", "US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory", "WHO Guidelines for Drinking-water Quality - Guideline values for chemicals that are of health significance in drinking-water"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Inhalation may produce health damage*.
- Cumulative effects may result following exposure*.
- May produce discomfort of the eyes, respiratory tract and skin*.
- * (limited evidence).
- Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.
- For detailed advice on Personal Protective Equipment, refer to the following U.S. Regulations and Standards:

OSHA Standards - 29 CFR:

1910.132 - Personal Protective Equipment - General requirements

1910.133 - Eye and face protection

1910.134 - Respiratory Protection

1910.136 - Occupational foot protection

1910.138 - Hand Protection

Eye and face protection - ANSI Z87.1

Foot protection - ANSI Z41

Respirators must be NIOSH approved.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

www.Chemwatch.net

Issue Date: Mar-27-2008 Print Date: Apr-10-2012