

Produktinformation

Forschungsprodukte & Biochemikalien
Zellkultur & Verbrauchsmaterial
Diagnostik & molekulare Diagnostik
Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 F. +43(0)1 489 3961-7 <u>mail@szabo-scandic.com</u> www.szabo-scandic.com

Dequalinium iodide

Santa Cruz, California 95060 800.457.3801 or 831.457.3800 **EMERGENCY** ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C30-H40-I2-N4, "quinaldinium, 1, 1' -decamethylenebis(4-amino-, diiodide", "BAQD 10", "decamethylenebis(4-aminoquinaldinium iodide)", "1, 1' -decamethylenebis(4-aminoquinaldinium iodide)", "1, 10-decamethylenebis(4-aminoquinaldinium iodide)", "quinolinium, 1, 1' -(1, 10-decanediyl)bis(4-amino-2-methyl-, diiodide", "antibacterial/ disinfectant/ antiseptic/ antimicrobial/ bacteriostat"

EMERGENCY OVERVIEW

RISK Harmful if swallowed. May cause SENSITISATION by skin contact. Irritating to eyes, respiratory system and skin. Toxic to aquatic organisms. Cumulative effects may result following exposure*. Eye contact may produce serious damage*. Possible respiratory sensitiser*. May possibly be harmful to the foetus/embryo*. * (limited evidence).

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

• Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

• Concentrated solutions of many cationics may cause corrosive damage to mucous membranes and the oesophagus. Nausea and vomiting (sometimes bloody) may follow ingestion. Serious exposures may produce an immediate burning sensation of the mouth, throat and abdomen with profuse salivation, ulceration of mucous membranes, signs of circulatory shock (hypotension, laboured breathing, and cyanosis) and a feeling of apprehension, restlessness, confusion and weakness. Weak convulsive movements may precede central nervous system depression. Erosion, ulceration, and petechial haemorrhage may occur through the small intestine with glottic, brain and pulmonary oedema. Death may result from asphyxiation due to paralysis of the muscles of respiration or cardiovascular collapse. Fatal poisoning may arise even when the only pathological signs are visceral congestion, swallowing, mild pulmonary oedema or varying signs of gastrointestinal irritation. Individuals who survive a period of severe hypertension may develop kidney failure. Cloudy swelling, patchy necrosis and fatty infiltration in such visceral organs as the heart, liver and kidneys shows at death.

EYE

This material can cause eye irritation and damage in some persons.

■ If applied to the eyes, this material causes severe eye damage.

SKIN

This material can cause inflammation of the skin oncontact in some persons.

- The material may accentuate any pre-existing dermatitis condition.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

CHRONIC HEALTH EFFECTS

• Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population.

Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

There is some evidence that inhaling this product is more likely to cause a sensitisation reaction in some persons compared to the general population.

Based on experience with animal studies, there is a possibility that exposure to the material may result in toxic effects to the development of the foetus, at levels which do not cause significant toxic effects to the mother.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Prolonged or repeated skin contact may cause degreasing with drying, cracking and dermatitis following.

lodine and iodides, may give rise to local allergic reactions such as hives, rupture of skin blood vessels, pain in joints or diseases of the lymph nodes.

Iodine and iodides cause goitre and diminished as well as increased activity of the thyroid gland. A toxic syndrome resulting from chronic iodide overdose and from repeated administration of small amounts of iodine is characterised by excessive saliva production, head cold, sneezing, conjunctivitis, headache, fever, laryngitis, inflammation of the bronchi and mouth cavity, inflamed parotid gland, and various

skin rashes. Swelling and inflammation of the throat, irritated and swollen eyes and lung swelling may also occur. Swelling of the glottis, necessitating a tracheotomy has been reported. Use of iodides in pregnancy can cause foetal death, severe goitre, hypothyroidism and the cretinoid appearance of the newborn.

Respiratory sensitisation may result in allergic/asthma like responses; from coughing and minor breathing difficulties to bronchitis with wheezing, gasping.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS						
NAME	CAS RN	%				
dequalinium iodide	2019-42-3	>98				

Section 4 - FIRST AID MEASURES

SWALLOWED

- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- For advice, contact a Poisons Information Centre or a doctor.
- Urgent hospital treatment is likely to be needed.
- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.

• If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS. Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:

• INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.

EYE

If this product comes in contact with the eyes:

- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

If skin contact occurs:

- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

Treat symptomatically.

For exposures to quaternary ammonium compounds;

- For ingestion of concentrated solutions (10% or higher): Swallow promptly a large quantity of milk, egg whites / gelatin solution. If not
 readily available, a slurry of activated charcoal may be useful. Avoid alcohol. Because of probable mucosal damage omit gastric
 lavage and emetic drugs.
- For dilute solutions (2% or less): If little or no emesis appears spontaneously, administer syrup of Ipecac or perform gastric lavage.
- If hypotension becomes severe, institute measures against circulatory shock.
- If respiration laboured, administer oxygen and support breathing mechanically. Oropharyngeal airway may be inserted in absence of gag reflex. Epiglottic or laryngeal edema may necessitate a tracheotomy.
- Persistent convulsions may be controlled by cautious intravenous injection of diazepam or short-acting barbiturate drugs. [Gosselin et al, Clinical Toxicology of Commercial Products]

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG):	Negligible
Upper Explosive Limit (%):	Not available.
Specific Gravity (water=1):	Not available
Lower Explosive Limit (%):	Not available

EXTINGUISHING MEDIA

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible (circa 70%) according to the circumstances under which the combustion process occurs, such materials may cause fires and / or dust explosions.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions).
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely if ignited particles exceeding this limit will generally not form flammable dust clouds.; once initiated, however, larger particles up to 1400 microns diameter will contribute to the propagation of an explosion.
- In the same way as gases and vapours, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL).are applicable to dust clouds but only the LEL is of practical use; - this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the "Minimum Explosible Concentration", MEC)
- When processed with flammable liquids/vapors/mists,ignitable (hybrid) mixtures may be formed with combustible dusts. Ignitable
 mixtures will increase the rate of explosion pressure rise and the Minimum Ignition Energy (the minimum amount of energy required
 to ignite dust clouds MIE) will be lower than the pure dust in air mixture. The Lower Explosive Limit (LEL) of the vapour/dust mixture
 will be lower than the individual LELs for the vapors/mists or dusts
- A dust explosion may release of large quantities of gaseous products; this in turn creates a subsequent pressure rise of explosive force capable of damaging plant and buildings and injuring people.
- Usually the initial or primary explosion takes place in a confined space such as plant or machinery, and can be of sufficient force to damage or rupture the plant. If the shock wave from the primary explosion enters the surrounding area, it will disturb any settled dust layers, forming a second dust cloud, and often initiate a much larger secondary explosion. All large scale explosions have resulted from chain reactions of this type.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.
- All movable parts coming in contact with this material should have a speed of less than 1-meter/sec
- A sudden release of statically charged materials from storage or process equipment, particularly at elevated temperatures and/ or
 pressure, may result in ignition especially in the absence of an apparent ignition source
- One important effect of the particulate nature of powders is that the surface area and surface structure (and often moisture content) can vary widely from sample to sample, depending of how the powder was manufactured and handled; this means that it is virtually impossible to use flammability data published in the literature for dusts (in contrast to that published for gases and vapours).
- Autoignition temperatures are often quoted for dust clouds (minimum ignition temperature (MIT)) and dust layers (layer ignition temperature (LIT)); LIT generally falls as the thickness of the layer increases.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen iodide, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Clean up waste regularly and abnormal spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

MAJOR SPILLS

Moderate hazard.

- CAUTION: Advise personnel in area.
- Alert Emergency Services and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise Emergency Services.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions)
- Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame.
- Establish good housekeeping practices.
- Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds.
- Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion. According to NFPA Standard 654, dust layers 1/32 in.(0.8 mm) thick can be sufficient to warrant immediate cleaning of the area.
- Do not use air hoses for cleaning.
- Minimise dry sweeping to avoid generation of dust clouds. Vacuum dust-accumulating surfaces and remove to a chemical disposal area. Vacuums with explosion-proof motors should be used.
- Control sources of static electricity. Dusts or their packages may accumulate static charges, and static discharge can be a source of ignition.
- Solids handling systems must be designed in accordance with applicable standards (e.g. NFPA including 654 and 77) and other national guidance.
- Do not empty directly into flammable solvents or in the presence of flammable vapors.
- The operator, the packaging container and all equipment must be grounded with electrical bonding and grounding systems. Plastic bags and plastics cannot be grounded, and antistatic bags do not completely protect against development of static charges.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Glass container is suitable for laboratory quantities
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records

degualinium iodide: CAS:2019-42-3

PERSONAL PROTECTION

RESPIRATOR

 Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) FYF

When handling very small quantities of the material eye protection may not be required.

For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs:

- Chemical goggles
- Face shield. Full face shield may be required for supplementary but never for primary protection of eyes
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

HANDS/FEET

NOTE:

- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Rubber gloves (nitrile or low-protein, powder-free latex, latex/ nitrile). Employees allergic to latex gloves should use nitrile gloves in preference.
- Double gloving should be considered.
- PVC gloves.
- Change gloves frequently and when contaminated, punctured or torn.
- Wash hands immediately after removing gloves.
- Protective shoe covers. [AS/NZS 2210]
- Head covering.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc

• polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eye wash unit.
- Ensure there is ready access to an emergency shower.
- For Emergencies: Vinyl suit

ENGINEERING CONTROLS

Enclosed local exhaust ventilation is required at points of dust, fume or vapour generation.

HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapours.

Barrier protection or laminar flow cabinets should be considered for laboratory scale handling.

When handling quantities up to 500 gram in either a standard laboratory with general dilution ventilation (e.g. 6-12 air changes per hour) is preferred. Quantities up to 1 kilogram may require a designated laboratory using fume hood, biological safety cabinet, or approved vented enclosures. Quantities exceeding 1 kilogram should be handled in a designated laboratory or containment laboratory using appropriate barrier/ containment technology.

Manufacturing and pilot plant operations require barrier/ containment and direct coupling technologies.

Barrier/ containment technology and direct coupling (totally enclosed processes that create a barrier between the equipment and the room) typically use double or split butterfly valves and hybrid unidirectional airflow/ local exhaust ventilation solutions (e.g. powder containment booths). Glove bags, isolator glove box systems are optional. HEPA filtration of exhaust from dry product handling areas is required.

Fume-hoods and other open-face containment devices are acceptable when face velocities of at least 1 m/s (200 feet/minute) are achieved. Partitions, barriers, and other partial containment technologies are required to prevent migration of the material to uncontrolled areas. For non-routine emergencies maximum local and general exhaust are necessary. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, etc. evaporating from tank (in still air)	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) Within each range the appropriate value depends on:	1-2.5 m/s (200-500 f/min.)
Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion Simple theory shows that air velocity falls rapidly with distance aw	4: Small hood-local control only vay from the opening of a simple extraction pipe. Velocity generally

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other

mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated: Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated.

The following protective devices are recommended where exposures exceed the recommended exposure control guidelines by factors of:

10; high efficiency particulate (HEPA) filters or cartridges

10-25; loose-fitting (Tyvek or helmet type) HEPA powered-air purifying respirator.

25-50; a full face-piece negative pressure respirator with HEPA filters

50-100; tight-fitting, full face-piece HEPA PAPR

100-1000; a hood-shroud HEPA PAPR or full face-piece supplied air respirator operated in pressure demand or other positive pressure mode.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid.

Does not mix with water.

State	Divided solid	Molecular Weight	710.47
Melting Range (°F)	>572	Viscosity	Not Applicable
Boiling Range (°F)	Not applicable	Solubility in water (g/L)	Partly miscible
Flash Point (°F)	Not available	pH (1% solution)	Not applicable
Decomposition Temp (°F)	Not available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapour Density (air=1)	Not Applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

Powder with bitter taste; does not mix well with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

STORAGE INCOMPATIBILITY

• Avoid reaction with oxidising agents

Incompatible with soaps and other anionic surfactants.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

dequalinium iodide

TOXICITY AND IRRITATION

DEQUALINIUM IODIDE:

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY

IRRITATION Nil Reported

Intraperitoneal (mouse) LD50: 21 mg/kg

• Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly

sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Most undiluted cationic surfactants satisfy the criteria for classification as Harmful (Xn) with R22 and as Irritant (Xi) for skin and eyes with R38 and R41.

For quaternary ammonium compounds (QACs):

Quaternary ammonium compounds are synthetically made surfactants. Studies show that its solubility, toxicity and irritation depend on chain length and bond type while effect on histamine depends on concentration. QACs may cause muscle paralysis with no brain involvement. There is a significant association between the development of asthma symptoms and the use of QACs as disinfectant. For dequalinium salts and derivatives

Dequalinium a cationic, lipophilic mitochondrial poison, selectively targets the mitochondrial membrane of certain epithelial carcinoma cells, in which it inhibits cellular energy production. It has demonstrated potency as a cytotoxic agent specific for carcinoma.

Single ip doses of 20 and 25 mg/kg of dequalinium chloride (DECA) in BALB/c mice produced > 50% mortality. Histologic examination of the tissues revealed significant damage to the liver and kidneys, with pulmonary congestion occurring secondary to renal-hepatic failure. A cumulative assessment revealed that 60% of the animals tolerated 15 doses of 6 and 7 mg/kg QOD and that 100% tolerated 5 doses of 11 and 12 mg/kg (every 7 days). Higher DECA doses under either regimen induced severe toxic effects and mortality.

Dequalinium chloride has produced skin irritation, ulceration and sensitisation in humans. It was not mutagenic in an Ames bacterial test Amyloid fibril formation of amyloid beta/A4 protein (Abeta) is critical to understand the pathological mechanism of Alzheimer's disease and develop controlling strategy toward the neurodegenerative disease. For this purpose, dequalinium (DQ) has been employed as a specific modifier for Abeta aggregation and its subsequent cytotoxicity. In the presence of DQ, the final thioflavin-T binding fluorescence of Abeta aggregates decreased significantly. It was the altered morphology of Abeta aggregates in a form of the bundles of the fibrils, distinctive from normal single-stranded amyloid fibrils, and the resulting reduced beta-sheet content that were responsible for the decreased fluorescence. The morphological transition of Abeta aggregates assessed with atomic force microscope indicated that the bundle structure observed with DQ appeared to be resulted from the initial multimeric seed structure rather than lateral association of preformed single-stranded fibrils. Investigation of the seeding effect of the DQ-induced Abeta aggregates. Taken together, DQ has been that the seed structure has determined the final morphology of Abeta aggregates as well as the aggregates. Taken together, DQ has been the lag phase. In addition, the cytotoxicity was also varied depending on the final morphology of the aggregates. Taken together, DQ has been considered to be a useful chemical probe to control the cytotoxicity of the amyloid fibrils by influencing the seed structures which turned out to be central to develop therapeutic strategy by inducing the amyloid fibrils in different shapes with varied toxicities.

Section 12 - ECOLOGICAL INFORMATION

Toxic to aquatic organisms.

Ecotoxicity				
Ingredient	Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility
dequalinium iodide	No Data Available	No Data Available		

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

- All waste must be handled in accordance with local, state and federal regulations.
- Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and MSDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

- A Hierarchy of Controls seems to be common the user should investigate:
- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In most instances the supplier of the material should be consulted.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

dequalinium iodide (CAS: 2019-42-3) is found on the following regulatory lists;

"Canada - Alberta Ambient Air Quality Guidelines", "Canada - Alberta Ambient Air Quality Objectives", "Canada - British Columbia Occupational Exposure Limits", "Canada - Ontario Occupational Exposure Limits", "Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)", "Canada National Pollutant Release Inventory (NPRI)", "US - California Permissible Exposure Limits for Chemical Contaminants", "US - Michigan Exposure Limits for Air Contaminants", "US - Oregon Permissible Exposure Limits (Z-1)", "US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants", "US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants", "US Clean Air Act (CAA) National Ambient Air Quality Standards (NAAQS)"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.
- Eye contact may produce serious damage*.
- Possible respiratory sensitiser*.
- May possibly be harmful to the foetus/embryo*.

* (limited evidence).

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references.

The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether

the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

 For detailed advice on Personal Protective Equipment, refer to the following U.S. Regulations and Standards: OSHA Standards - 29 CFR:
 1910.132 - Personal Protective Equipment - General requirements
 1910.133 - Eye and face protection
 1910.134 - Respiratory Protection
 1910.136 - Occupational foot protection
 1910.138 - Hand Protection
 1910.138 - Hand Protection
 Eye and face protection
 Foot protection - ANSI Z87.1
 Foot protection - ANSI Z41
 Respirators must be NIOSH approved.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. www.Chemwatch.net

Issue Date: Jan-22-2010 Print Date:Apr-12-2012