

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

Cerium(III) 2-ethylhexanoate

sc-234297

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Cerium(III) 2-ethylhexanoate

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFPA

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and Canada:

877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436 2255

(1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

■ Reagent. Regeant

SYNONYMS

C8-H16-O2.1/3Ce, "hexanoic acid, 2-ethyl-, cerium(3+)salt", "cerium 2-ethylhexanoate", "cerium octanoate"

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

		Min	Max
Flammability:	1		
Toxicity:	0		
Body Contact:	2		Min/Nil=0 Low=1 Moderate=2
Reactivity:	1		
Chronic:	2		High=3 Extreme=4

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

ACUTE HEALTH EFFECTS

POTENTIAL HEALTH EFFECTS

SWALLOWED

■ The material has NOT been classified as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, unintentional ingestion is not thought to be cause for concern.

EYE

■ Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

SKIN

- The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- There is some evidence to suggest that the material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- Not normally a hazard due to non-volatile nature of product.
- Exposure to vapors of some rare earth salts can cause sensitivity to heat, itching, and increased sensitivity of smell and taste. Other effects include inflamed airways and lung, emphysema, regional narrowing of terminal airways and cell changes. Rarely, excess blood flow has occurred following a delay. Lung cancers can also occur.

CHRONIC HEALTH EFFECTS

■ Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Based on experience with animal studies, there is a possibility that exposure to the material may result in toxic effects to the development of the fetus, at levels which do not cause significant toxic effects to the mother.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Cerium is one of the rare earth metals - light type (cerium family). Rare earth metals have not been shown to have toxic effects, but dust inhalation can still cause scarring of the lungs.

2-Ethylhexanoic acid (2-EHA) its esters and its salts are of concern to human health because of their potential to induce carcinogenicity, liver toxicity and developmental/reproductive toxicity. 2-EHA is of low acute oral and dermal toxicity, is a mild skin irritant and a severe eye irritant. It is not mutagenic in Ames test, but is capable of inducing chromosome aberration and sister chromatid exchanges in vitro, liver toxicity and liver tumours after repeated dose treatment, In addition, 2-EHA acid has been associated with reproductive and developmental toxicity in experimental animals.

2-EHA is quickly resorbed orally, dermally and following inhalation and almost fully excreted mainly in urine. As in the case of fatty acids, degradation mainly takes place by means of peroxisomal beta-oxidation

Various studies on reproduction toxicity have produced indications of an embryotoxic effect of 2-EHA. After oral administration, NOAEL values for maternal toxicity and foetotoxic effects of 2-EHA were determined in rabbits at 25 and >250 mg/kg body weight/day and in rats at 250 and 100 mg/kg body weight/day. The foetotoxic findings in rats were based on a reduced skeleton ossification at the next higher dose (250 mg/kg body weight/day). No teratogenic effects were observed in this study. In comparison with the structural isomer valproic acid, a known human teratogen, 2-EHA does have similar reprotoxic effects at maternal toxic doses in animal experiments but a far lower potency Following sub-chronic oral administration of 2-EHA, critical effects like liver changes (higher relative liver weight, histological changes in hepatocytes) were observed in rats and mice and histological renal tubule results were observed in mice. Furthermore, statistically significant, higher cholesterol values were found in all treated male rats (61, 303 and 917 mg/kg body weight/day) and in male and female mice in the middle and high dose groups (885-3139 mg/kg body weight/day). In rats the maximum dose with no adverse effect (NOAEL) was 61 mg/kg body weight/day

In bacterial test systems, mutagenicity studies produced negative findings. In test systems

with mammalian cells, by contrast, the findings were weakly positive. Cytogenetic and SCE studies involving CHO cells were positive, one SCE test in human lymphocytes was questionably positive and one experiment concerning tritium-thymidine incorporation into the DNA of mouse lymphocytes was negative. Furthermore, An unpublished micronucleus study on the bone marrow of CD-1 mice was conducted in compliance with OECD Guideline 474. No significant increase in the micronuclei was observed at doses of 400, 800 or 1,600 mg/kg body weight (Inveresk Research International Ltd, 1994). Furthermore, in vitro and in vivo genotoxicity data (micronucleus test, dominant lethal test) are available for 2-ethylhexanol which is rapidly and quantitatively converted into 2-EHA in metabolism studies. This data do not indicate

any genotoxic potential which means that such an effect of 2-EHA is not likely either. As 2-EHA can induce both DNA synthesis and inhibition of intercellular communication in hepatic cells, a tumour-promoting potential in rodents, comparable to that of other peroxisome proliferators, cannot be ruled out. The carcinogenic effect of peroxisome proliferators in rodents (e.g. of di(2-ethylhexyl)phthalate, DEHP) is not deemed to be relevant for humans.

Calcium/zinc and barium/zinc salts of 2-EHA are used as thermo-stabilisers for PVC, together with co-stabilisers like polyols or epoxy compounds, in order to capture the hydrochloride cleaved during the thermal loading of PVC; in addition various salts are used in other food and beverage containers as plasticisers. The migration of 2-EHA from the sealing compounds in the metal lids. has been demonstrated in food contamination. The potential for human exposure to 2-EHA therefore is significant.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

 NAME
 CAS RN
 %

 cerium(III) 2-ethylhexanoate
 56797-01-4
 >98

Section 4 - FIRST AID MEASURES

SWALLOWED

- .
- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor.

EYE

- If this product comes in contact with eyes:
- Wash out immediately with water.
- If irritation continues, seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin or hair contact occurs:
- Flush skin and hair with running water (and soap if available).
- · Seek medical attention in event of irritation.

INHALED

- •
- If fumes or combustion products are inhaled remove from contaminated area.
- · Other measures are usually unnecessary.

NOTES TO PHYSICIAN

■ Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES			
Vapour Pressure (mmHG):	Not Applicable		
Upper Explosive Limit (%):	Not Available		
Specific Gravity (water=1):	Not Available		
Lower Explosive Limit (%):	Not Available		

EXTINGUISHING MEDIA

- -
- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- · Water spray or fog Large fires only.

FIRE FIGHTING

-
- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible solid which burns but propagates flame with difficulty.

- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and
 any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a
 particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), metal oxides, other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

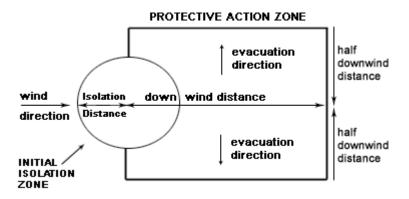
Chemical goggles.

Gloves:

Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES


MINOR SPILLS

- Clean up all spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Sweep up, shovel up or vacuum up (consider explosion-proof machines designed to be grounded during storage and use).
- Place spilled material in clean, dry, sealable, labeled container.

MAJOR SPILLS

- Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

From IERG (Canada/Australia)
Isolation Distance Downwind Protection Distance -

From US Emergency Response Guide 2000 Guide No guide found.

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

5 Guide No guide found. is taken from the US DOT emergency response guide book.

6 IERG information is derived from CANUTEC - Transport Canada.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Glass container.
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- .
- Store in original containers.
- Keep containers securely sealed.Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records
• cerium(III) 2-ethylhexanoate: CAS:56797-01-4

MATERIAL DATA

CERIUM(III) 2-ETHYLHEXANOATE:

■ as cerium CEL TWA: 1 mg/m3 (compare TLV-TWA yttrium)Exposure to the vapors of some rare earth salts reportedly produces sensitivity to heat, itching and an increased perception of odor and taste. Other effects may include bronchiolitis, subacute bronchitis, acute transient chemical pneumonitis, focal hypertrophic emphysema, regional bronchiolar stricturing and cellular eosinophilia. In rare fatal cases of exposure to the rare-earth fluoride and/or oxide mixtures, delayed chemical hyperemia has occurred. Lung granulomas have also been seen in experimental animals.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- -
- · Safety glasses with side shields.
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- · chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- . .
- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.
- ______
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).

- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These may
 be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a
 complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

-

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

^{* -} Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

motion).

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks
- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

Type of Contaminant: Air Speed:

direct spray, spray painting in shallow booths, drum filling, conveyer

loading, crusher dusts, gas discharge (active generation into zone of 1-2.5 m/s (200-500 f/min.) rapid air motion)

grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air

2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range

1: Room air currents minimal or favorable to capture

2: Contaminants of low toxicity or of nuisance value only

3: Intermittent, low production.

4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are

multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

State	Divided Solid	Molecular Weight	572.76
Melting Range (°F)	Not Available	Viscosity	Not Applicable
Boiling Range (°F)	Not Applicable	Solubility in water (g/L)	Partly Miscible
Flash Point (°F)	Not Available	pH (1% solution)	Not Applicable
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not Applicable
Autoignition Temp (°F)	Not Available	Vapour Pressure (mmHG)	Not Applicable
Upper Explosive Limit (%)	Not Available	Specific Gravity (water=1)	Not Available
Lower Explosive Limit (%)	Not Available	Relative Vapor Density (air=1)	Not Applicable
Volatile Component (%vol)	Not Applicable	Evaporation Rate	Not Applicable

APPEARANCE

Solid; does not mix well with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

■ Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

cerium(III) 2-ethylhexanoate

TOXICITY AND IRRITATION

■ No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

CERIUM(III) 2-ETHYLHEXANOATE:

■ Crops can take up cerium. Cerium has affinity for humic substances that may alter its availability in aquatic systems. Current fate and transport studies are limited and may not adequately address long term environmental exposure risks to both humans and other organisms. Although cerium has low acute toxicity, long term health and environmental effects are less well understood.

The form cerium takes can also influence its biological and environmental fate. Oxides and hydroxides of cerium are poorly soluble in body fluids and are slow to clear from the organism. Cerium can affect the respiratory tract and associated lymph nodes (inhalation exposure) and once in the circulatory system can partition to the skeleton, liver, kidney and spleen. Studies subjecting animals to large dosages of cerium show evidence of neurological effects, possibly due to cerium competing with calcium binding sites in the brain. Long term human expose to cerium is correlated with rare earth pneumoconiosis, but the precise role of cerium in this disease is not well characterized due to confounding metal aerosols.

■ DO NOT discharge into sewer or waterways.

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse

- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

REGULATIONS

cerium(III) 2-ethylhexanoate (CAS: 56797-01-4) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)","US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Cumulative effects may result following exposure*.
- May produce discomfort of the respiratory system*.
- May possibly be harmful to the fetus/ embryo*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: May-22-2008 Print Date:Jul-27-2010