Produktinformation Forschungsprodukte & Biochemikalien Zellkultur & Verbrauchsmaterial Diagnostik & molekulare Diagnostik Laborgeräte & Service Weitere Information auf den folgenden Seiten! See the following pages for more information! ## Lieferung & Zahlungsart siehe unsere Liefer- und Versandbedingungen # Zuschläge - Mindermengenzuschlag - Trockeneiszuschlag - Gefahrgutzuschlag - Expressversand ## SZABO-SCANDIC HandelsgmbH Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 F. +43(0)1 489 3961-7 mail@szabo-scandic.com www.szabo-scandic.com linkedin.com/company/szaboscandic in # Tetraethylammonium tetrafluoroborate sc-251177 **Material Safety Data Sheet** The Power to Question Hazard Alert Code Key: **EXTREME** HIGH **MODERATE** LOW #### Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION #### **PRODUCT NAME** Tetraethylammonium tetrafluoroborate #### STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. #### **NFPA** #### **SUPPLIER** Company: Santa Cruz Biotechnology, Inc. 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-930**5** Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 #### **PRODUCT USE** ■ Reagent. Surfactant #### **SYNONYMS** C8-H20-BF4-N, (C2H4)4NBF4, "ammonium, tetraethyl-, fluoroborate", "ethanaminium, N, N, N-triethyl-, fluoborate", "tetraethyl ammonium fluoborate", "N, N, N-triethylethanaminium fluoroborate", "quaternary ammonium compound" #### **Section 2 - HAZARDS IDENTIFICATION** #### **CHEMWATCH HAZARD RATINGS** #### **CANADIAN WHMIS SYMBOLS** ### **EMERGENCY OVERVIEW** #### **RISK** Risk of serious damage to eyes. Harmful by inhalation, in contact with skin and if swallowed. Irritating to respiratory system and skin. Toxic to aquatic organisms. # POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS #### **SWALLOWED** - Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. - Concentrated solutions of many cationics may cause corrosive damage to mucous membranes and the esophagus. Nausea and vomiting (sometimes bloody) may follow ingestion. Serious exposures may produce an immediate burning sensation of the mouth, throat and abdomen with profuse salivation, ulceration of mucous membranes, signs of circulatory shock (hypotension, labored breathing, and cyanosis) and a feeling of apprehension, restlessness, confusion and weakness. Weak convulsive movements may precede central nervous system depression. Erosion, ulceration, and petechial hemorrhage may occur through the small intestine with glottic, brain and pulmonary edema. Death may result from asphyxiation due to paralysis of the muscles of respiration or cardiovascular collapse. Fatal poisoning may arise even when the only pathological signs are visceral congestion, swallowing, mild pulmonary edema or varying signs of gastrointestinal irritation. Individuals who survive a period of severe hypertension may develop kidney failure. Cloudy swelling, patchy necrosis and fatty infiltration in such visceral organs as the heart, liver and kidneys shows at death. - Fluoride causes severe loss of calcium in the blood, with symptoms appearing several hours later including painful and rigid muscle contractions of the limbs. Cardiovascular collapse can occur and may cause death with increased heart rate and other heart rhythm irregularities. The brain and kidneys may be affected. Other toxic effects include headache, increased saliva output, jerking of the eyeball and dilated pupils, lethargy, stupor, coma and rarely, convulsions. #### EYE ■ If applied to the eyes, this material causes severe eye damage. #### SKIN - Skin contact with the material may be harmful; systemic effects may resultfollowing absorption. - This material can cause inflammation of the skin oncontact in some persons. - The material may accentuate any pre-existing dermatitis condition. - Open cuts, abraded or irritated skin should not be exposed to this material. - Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. #### **INHALED** - Inhalation of dusts, generated by the material, during the course of normalhandling, may be harmful. - The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. - Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. - Acute effects of fluoride inhalation include irritation of nose and throat, coughing and chest discomfort. A single acute over-exposure may even cause nose bleed. Pre-existing respiratory conditions such as emphysema, bronchitis may be aggravated by exposure. Occupational asthma may result from exposure. #### **CHRONIC HEALTH EFFECTS** ■ Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. Prolonged or repeated skin contact may cause degreasing with drying, cracking and dermatitis following. Borate can accumulate in the testes and deplete germ cells and cause withering of the testicles, according to animal testing. Hair loss, skin inflammation, stomach ulcer and anemia can all occur. Repeated swallowing or inhalation irritates the stomach, causes a loss of appetite, disturbed digestion, nausea and vomiting, red rash, dry skin and mucous membranes, reddening of the tongue, cracking of the lips, inflamed conjunctiva, swelling of the eyelids and kidney injury. Prolonged ingestion causes effects to the reproductive system in both males and females. Fluoborates accumulate in the thyroid gland, preventing the uptake of iodine. Chronic exposure to boron trifluoride can increase levels of bone fluoride and cause dental fluorosis. # Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS NAME CAS RN % tetraethylammonium tetrafluoroborate 429-06-1 >98 #### **Section 4 - FIRST AID MEASURES** #### **SWALLOWED** - IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. - Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise: - For advice, contact a Poisons Information Center or a doctor. - Urgent hospital treatment is likely to be needed. - If conscious, give water to drink. - INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. NOTE: Wear a protective glove when inducing vomiting by mechanical means. - In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition. - If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist. - If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS. #### FYF - If this product comes in contact with the eyes: - Immediately hold eyelids apart and flush the eye continuously with running water. - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. - Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes. - Transport to hospital or doctor without delay. - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. #### SKIN - If skin contact occurs: - Immediately remove all contaminated clothing, including footwear - Flush skin and hair with running water (and soap if available). - Seek medical attention in event of irritation. #### **INHALED** - If fumes or combustion products are inhaled remove from contaminated area. - Lay patient down. Keep warm and rested. - Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. - Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. - Transport to hospital, or doctor, without delay. ## **NOTES TO PHYSICIAN** - For acute or short term repeated exposures to fluorides: - Fluoride absorption from gastro-intestinal tract may be retarded by calcium salts, milk or antacids. - Fluoride particulates or fume may be absorbed through the respiratory tract with 20-30% deposited at alveolar level. - Peak serum levels are reached 30 mins. post-exposure; 50% appears in the urine within 24 hours. - For acute poisoning (endotracheal intubation if inadequate tidal volume), monitor breathing and evaluate/monitor blood pressure and pulse frequently since shock may supervene with little warning. Monitor ECG immediately; watch for arrhythmias and evidence of Q-T prolongation or T-wave changes. Maintain monitor.
Treat shock vigorously with isotonic saline (in 5% glucose) to restore blood volume and enhance renal excretion. - Where evidence of hypocalcemic or normocalcemic tetany exists, calcium gluconate (10 ml of a 10% solution) is injected to avoid tachycardia. BIOLOGICAL EXPOSURE INDEX - BEI These represent the determinants observed in specimens collected from a healthy worker exposed at the Exposure Standard (ES or TLV): | at the Exposure standard (20 or 12). | | | | | |--------------------------------------|--------------------|----------------|----------|--| | Determinant | Index | Sampling Time | Comments | | | Fluorides in urine | 3 mg/gm creatinine | Prior to shift | B, NS | | | | 10mg/gm creatinine | End of shift | B, NS | | B: Background levels occur in specimens collected from subjects NOT exposed NS: Non-specific determinant; also observed after exposure to other exposures. For exposures to quaternary ammonium compounds; - For ingestion of concentrated solutions (10% or higher): Swallow promptly a large quantity of milk, egg whites / gelatin solution. If not readily available, a slurry of activated charcoal may be useful. Avoid alcohol. Because of probable mucosal damage omit gastric lavage and emetic drugs. - For dilute solutions (2% or less): If little or no emesis appears spontaneously, administer syrup of lpecac or perform gastric lavage. - If hypotension becomes severe, institute measures against circulatory shock. - If respiration laboured, administer oxygen and support breathing mechanically. Oropharyngeal airway may be inserted in absence of gag reflex. Epiglottic or laryngeal edema may necessitate a tracheotomy. - Persistent convulsions may be controlled by cautious intravenous injection of diazepam or short-acting barbiturate drugs. [Gosselin et al, | Section 5 - FIRE FIGHTING MEASURES | | | | | |------------------------------------|---------------|--|--|--| | Vapour Pressure (mmHG): | Negligible | | | | | Upper Explosive Limit (%): | Not available | | | | | Specific Gravity (water=1): | Not available | | | | | Lower Explosive Limit (%): | Not available | | | | #### **EXTINGUISHING MEDIA** - Water spray or fog. - Foam - Dry chemical powder. - BCF (where regulations permit). - Carbon dioxide. #### **FIRE FIGHTING** - Alert Emergency Responders and tell them location and nature of hazard. - Wear full body protective clothing with breathing apparatus. - Prevent, by any means available, spillage from entering drains or water course. - Use fire fighting procedures suitable for surrounding area. - DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Equipment should be thoroughly decontaminated after use. #### GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS - Combustible solid which burns but propagates flame with difficulty. - Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited. - Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport. - Build-up of electrostatic charge may be prevented by bonding and grounding. - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen fluoride, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material. May emit poisonous fumes. #### FIRE INCOMPATIBILITY ■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result. ## PERSONAL PROTECTION Glasses: Chemical goggles. Gloves: Respirator: Particulate ### **Section 6 - ACCIDENTAL RELEASE MEASURES** #### MINOR SPILLS - Remove all ignition sources. - Clean up all spills immediately. - Avoid contact with skin and eyes. - Control personal contact by using protective equipment. - Use dry clean up procedures and avoid generating dust. - Place in a suitable, labelled container for waste disposal. #### MAJOR SPILLS - Clear area of personnel and move upwind. - Alert Emergency Responders and tell them location and nature of hazard. - Wear full body protective clothing with breathing apparatus. - Prevent, by any means available, spillage from entering drains or water course. - Stop leak if safe to do so. - Contain spill with sand, earth or vermiculite. - Collect recoverable product into labeled containers for recycling. - Neutralize/decontaminate residue - Collect solid residues and seal in labeled drums for disposal. - Wash area and prevent runoff into drains. - After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. - If contamination of drains or waterways occurs, advise emergency services. #### PROTECTIVE ACTIONS FOR SPILL From IERG (Canada/Australia) Isolation Distance 25 meters Downwind Protection Distance 250 meters From US Emergency Response Guide 2000 Guide 154 #### **FOOTNOTES** 1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance. 2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects. 3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material. 4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder. 5 Guide 154 is taken from the US DOT emergency response guide book. 6 IERG information is derived from CANUTEC - Transport Canada. #### ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm) AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure. AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape. AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death. #### Section 7 - HANDLING AND STORAGE #### PROCEDURE FOR HANDLING - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. - DO NOT allow material to contact humans, exposed food or food utensils. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Launder contaminated clothing before re-use. - Use good occupational work practice. - Observe manufacturer's storing and handling recommendations. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source. - Do NOT cut, drill, grind or weld such containers. - In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit. #### RECOMMENDED STORAGE METHODS - Glass container. - Lined metal can, Lined metal pail/drum - Plastic pail - Polyliner drum - Packing as recommended by manufacturer. - Check all containers are clearly labeled and free from leaks. #### For low viscosity materials - Drums and jerricans must be of the non-removable head type. - Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSt. (23 deg. C) and solids (between 15 C deg. and 40 deg C.): - Removable head packaging; - Cans with friction closures and - low pressure tubes and cartridges may be used. - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages * . In addition,
where inner packagings are glass and contain liquids of packing group I and II there must be sufficient inert absorbent to absorb any spillage *. * unless the outer packaging is a close fitting molded plastic box and the substances are not incompatible with the plastic. ## STORAGE REQUIREMENTS - Store in original containers. - Keep containers securely sealed. - Store in a cool, dry, well-ventilated area. - Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - Observe manufacturer's storing and handling recommendations. #### SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS - X: Must not be stored together - O: May be stored together with specific preventions - +: May be stored together #### Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION #### **EXPOSURE CONTROLS** | Source | Material | TWA
ppm | TWA
mg/m³ | STEL
ppm | STEL
mg/m³ | Peak
ppm | Peak
mg/m³ | TWA
F/CC | Notes | |--|--|------------|--------------|-------------|---------------|-------------|---------------|-------------|--| | US - Hawaii Air Contaminant
Limits | tetraethylammonium
tetrafluoroborate (Fluorides
(as F)) | | 2.5 | | | | | | (CAS (Varies with compound)) | | Canada - Nova Scotia
Occupational Exposure Limits | tetraethylammonium
tetrafluoroborate (Fluorides
(as F)) | | 2.5 | | | | | | TLV Basis: bone
damage;
fluorosis. BEI | | Canada - Ontario Occupational
Exposure Limits | tetraethylammonium
tetrafluoroborate (Fluorides
(as fluoride)) | | 2.5 | | | | | | | | US - Tennessee Occupational
Exposure Limits - Limits For
Air Contaminants | tetraethylammonium
tetrafluoroborate (Fluorides
(as F)) | | 2.5 | | |--|---|-----|-----|---| | US - Alaska Limits for Air
Contaminants | tetraethylammonium
tetrafluoroborate (Fluorides
(as F)) | 2.5 | | | | Canada - Saskatchewan
Occupational Health and
Safety Regulations -
Contamination Limits | tetraethylammonium
tetrafluoroborate (Fluoride,
(as F)) | | 2.5 | 5 | | Canada - Northwest Territories
Occupational Exposure Limits
(English) | tetraethylammonium
tetrafluoroborate (Fluoride
(as F)) | | 2.5 | 5 | | US - Michigan Exposure Limits for Air Contaminants | tetraethylammonium
tetrafluoroborate (Fluorides
(as F)) | | 2.5 | | #### **MATERIAL DATA** TETRAETHYLAMMONIUM TETRAFLUOROBORATE: ■ Based on a study in which the threshold for minimum increase in bone density due to fluoride exposure was 3.38 mg/m3 (as fluoride), the present TLV-TWA has been adopted to prevent irritant effects and disabling bone changes. There is also support for the proposition that occupational exposure below the TLV will have no adverse effect on pregnant women or off-spring. IARC has classified fluorides in drinking water as Group 3 carcinogens; i.e. Not classifiable as to its carcinogenicity to humans. Equivocal evidence of carcinogenic activity (osteosarcoma) has been found in male rats administered sodium fluoride in drinking water. (0-175 ppm) Evidence was not found in female rats or in male or female mice #### PERSONAL PROTECTION Consult your EHS staff for recommendations #### **EYE** - Safety glasses with side shields. - Chemical goggles. - Contact lenses pose a special hazard: soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses. #### HANDS/FFFT ■ Wear chemical protective gloves, eq. PVC. Wear safety footwear or safety gumboots, eg. Rubber. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended. - Contaminated gloves should be replaced. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. #### **OTHER** - Overalls. - Evewash unit. - Barrier cream. - Skin cleansing cream. - Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These may be government mandated or vendor recommended. - Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - Use approved positive flow mask if significant quantities of dust becomes airborne. - Try to avoid creating dust conditions. #### **RESPIRATOR** | Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |-------------------|----------------------|----------------------|------------------------| | 10 x PEL | P1 | - | PAPR-P1 | | | Air-line* | - | - | | 50 x PEL | Air-line** | P2 | PAPR-P2 | | 100 x PEL | - | P3 | - | | | | Air-line* | - | | 100+ x PEL | - | Air-line** | PAPR-P3 | ^{* -} Negative pressure demand ** - Continuous flow Explanation of Respirator Codes: Class 1 low to medium absorption capacity filters. Class 2 medium absorption capacity filters. Class 3 high absorption capacity filters. PAPR Powered Air Purifying Respirator (positive pressure) cartridge. Type A for use against certain organic gases and vapors. Type AX for use against low boiling point organic compounds (less than 65°C). Type B for use against certain inorganic gases and other acid gases and vapors. Type E for use against sulfur dioxide and other acid gases and vapors. Type K for use against ammonia and organic ammonia derivatives Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica. Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume. Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium. The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required. Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used #### **ENGINEERING CONTROLS** - Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction. - Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace. - If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of: (a): particle dust respirators, if necessary, combined with an absorption cartridge; - (b): filter respirators with absorption cartridge or canister of the right type; - (c): fresh-air hoods or masks - Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding. - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant. Type of Contaminant: Air Speed: direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of $\,$ 1-2.5 m/s (200-500 f/min.) rapid air motion) grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air 2.5-10 m/s (500-2000 f/min.) motion) Within each range the appropriate value depends on: | Within cach range the appropriate value depends on. | | |---|----------------------------------| | Lower end of the range | Upper end of the range | | 1: Room air currents minimal or favorable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small
hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. #### **Section 9 - PHYSICAL AND CHEMICAL PROPERTIES** #### PHYSICAL PROPERTIES Solid. Mixes with water. | State | Divided solid | Molecular Weight | 217.06 | |---------------------------|----------------|--------------------------------|----------------| | Melting Range (°F) | >572 | Viscosity | Not Applicable | | Boiling Range (°F) | Not available. | Solubility in water (g/L) | Miscible | | Flash Point (°F) | >230 | pH (1% solution) | Not available | | Decomposition Temp (°F) | Not available. | pH (as supplied) | Not applicable | | Autoignition Temp (°F) | Not available | Vapour Pressure (mmHG) | Negligible | | Upper Explosive Limit (%) | Not available | Specific Gravity (water=1) | Not available | | Lower Explosive Limit (%) | Not available | Relative Vapor Density (air=1) | Not applicable | | Volatile Component (%vol) | Negligible | Evaporation Rate | Not applicable | #### **APPEARANCE** White hygroscopic crystalline powder; mixes with water, alcohol. #### Section 10 - CHEMICAL STABILITY #### CONDITIONS CONTRIBUTING TO INSTABILITY - - - Presence of incompatible materials. - Product is considered stable. - Hazardous polymerization will not occur. #### STORAGE INCOMPATIBILITY ■ Avoid reaction with oxidizing agents. For incompatible materials - refer to Section 7 - Handling and Storage. #### Section 11 - TOXICOLOGICAL INFORMATION tetraethylammonium tetrafluoroborate #### **TOXICITY AND IRRITATION** - unless otherwise specified data extracted from RTECS Register of Toxic Effects of Chemical Substances. - Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production. Most undiluted cationic surfactants satisfy the criteria for classification as Harmful (Xn) with R22 and as Irritant (Xi) for skin and eyes with R38 and R41. #### For quaternary ammonium compounds (QACs): Quaternary ammonium compounds (QACs) are cationic surfactants. They are synthetic organically tetra-substituted ammonium compounds, where the R substituents are alkyl or heterocyclic radicals. A common characteristic of these synthetic compounds is that one of the R's is a long-chain hydrophobic aliphatic residue The cationic surface active compounds are in general more toxic than the anionic and non-ionic surfactants. The positively-charged cationic portion is the functional part of the molecule and the local irritation effects of QACs appear to result from the quaternary ammonium cation. Due to their relative ability to solubilise phospholipids and cholesterol in lipid membranes, QACs affect cell permeability which may lead to cell death. Further QACs denature proteins as cationic materials precipitate protein and are accompanied by generalised tissue irritation. It has been suggested that the experimentally determined decrease in acute toxicity of QACs with chain lengths above C16 is due to decreased water solubility. In general it appears that QACs with a single long-chain alkyl groups are more toxic and irritating than those with two such substitutions, The straight chain aliphatic QACs have been shown to release histamine from minced guinea pig lung tissue However, studies with benzalkonium chloride have shown that the effect on histamine release depends on the concentration of the solution. When cell suspensions (11% mast cells) from rats were exposed to low concentrations, a decrease in histamine release was seen. When exposed to high concentrations the opposite result was obtained. In addition, QACs may show curare-like properties (specifically benzalkonium and cetylpyridinium derivatives, a muscular paralysis with no involvement of the central nervous system. This is most often associated with lethal doses Parenteral injections in rats, rabbits and dogs have resulted in prompt but transient limb paralysis and sometimes fatal paresis of the respiratory muscles. This effect seems to be transient From human testing of different QACs the generalised conclusion is obtained that all the compounds investigated to date exhibit similar toxicological properties. Acute toxicity: Studies in rats have indicated poor intestinal absorption of QACs. Acute toxicity of QACs varies with the compound and, especially, the route of administration. For some substances the LD50 value is several hundreds times lower by the i.p. or i.v. than the oral route, whereas toxicities between the congeners only differ in the range of two to five times. At least some QACs are significantly more toxic in 50% dimethyl sulfoxide than in plain water when given orally Probably all common QAC derivatives produce similar toxic reactions, but as tested in laboratory animals the oral mean lethal dose varies with the compound . Oral toxicity: LD50 values for QACs have been reported within the range of 250-1000 mg/kg for rats, 150-1000 mg/kg for mice, 150-300 mg/kg for guinea pigs and about 500 mg/kg b.w. for rabbits and dogs. The ranges observed reflect differences in the study designs of these rather old experiments as well as differences between the various QACs. The oral route of administration was characterised by delayed deaths, gastrointestinal lesions and respiratory and central nervous system depression. It was also found that given into a full stomach, the QACs lead to lower mortality and fewer gastrointestinal symptoms. This support the suggestion of an irritating effect Dermal toxicity: It has been concluded that the maximum concentration that did not produce irritating effect on intact skin is 0.1%. Irritation became manifest in the 1-10% range. Concentrations below 0.1% have caused irritation in persons with contact dermatitis or broken skin. Although the absorption of QACs through normal skin probably is of less importance than by other routes, studies with excised guinea pig skin have shown that the permeability constants strongly depends on the exposure time and type of skin Sensitisation: Topical mucosal application of QACs may produce sensitisation. Reports on case stories and patch test have shown that compounds such as benzalkonium chloride, cetalkonium chloride and cetrimide may possibly act as sensitisers. However, in general it is suggested that QACs have a low potential for sensitising man It is difficult to distinguish between an allergic and an irritative skin reaction due to the inherent skin irritating effect of QACs. #### Long term/repeated exposure: Inhalation: A group of 196 farmers (with or without respiratory symptoms) were evaluated for the relationship between exposure to QACs (unspecified, exposure levels not given) and respiratory disorders by testing for lung function and bronchial responsiveness to histamine. After histamine provocation statistically significant associations were found between the prevalence of mild bronchial responsiveness (including asthma-like symptoms) and the use of QACs as disinfectant. The association seems even stronger in people without respiratory symptoms. Genetic toxicity: QACs have been investigated for mutagenicity in microbial test systems. In Ames tests using Salmonella typhimurium with and without metabolic activation no signs of mutagenicity has been observed. Negative results were also obtained in E. coli reversion and B. subtilis rec assays. However, for benzalkonium chloride also positive and equivocal results were seen in the B. subtilis rec assays. No significant acute toxicological data identified in literature search. #### Section 12 - ECOLOGICAL INFORMATION Refer to data for ingredients, which follows: TETRAETHYLAMMONIUM TETRAFLUOROBORATE: - Toxic to aquatic organisms. - Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. ■ For quaternary ammonium compounds (QACs): QACs are white, crystalline powders. Low molecular weight QACs are very soluble in water, but slightly or not at all
soluble in solvents such as ether, petrol and benzene. As the molecular weight and chain lengths increases, the solubility in polar solvents (e.g. water) decreases and the solubility in non-polar solvents increases. Environmental fate A major part of the QACs is discharged into wastewater and removed in the biological processes of sewage treatment plant. A 90% reduction of the QACs in the water phase of sludge has been reported and alkyl di-/ trimethyl ammonium and alkyl dimethyl benzyl ammonium compounds seem almost completely degraded in sewage sludge. However, the aerobic and anaerobic biodegradability of QACs is not well investigated. Only sparse data are available concerning stability, solubility and biodegradability. In general, it seems that the biodegradability decreases with increasing numbers of alkyl chains: R(CH3)3N+ > R2(CH3)2N+ > R3(CH3)N+ . Within each category the biodegradability seems inversely proportional to the alkyl chain length. Heterocyclic QACs are less degradable than the non-cyclic. Investigations have shown that bioaccumulation of considerable dimensions will probably not take place. Ecotoxicity: Quaternary ammonium compounds and their polymers may be highly toxic to fish and other aquatic organisms. The toxicity of the quaternary ammoniums is known to be greatly reduced in the environment because of preferential binding to dissolved organics in surface water. - Although small amounts of fluorides are conceded to have beneficial effects two forms of chronic toxic effect, dental fluorosis and skeletal fluorosis may be caused by excessive intake over long periods. - For boron and borates: Environmental fate: Boron is generally found in nature bound to oxygen and is never found as the free element. Atmospheric boron may be in the form of particulate matter or aerosols as borides, boron oxides, borates, boranes, organoboron compounds, trihalide boron compounds, or borazines. Borates are relatively soluble in water, and will probably be removed from the atmosphere by precipitation and dry deposition. The half-life of airborne particles is usually on the order of days, depending on the size of the particle and atmospheric conditions. Boron readily hydrolyses in water to form the electrically neutral, weak monobasic acid boric acid (H3BO3) and the monovalent ion, B(OH)4-. In concentrated solutions, boron may polymerise, leading to the formation of complex and diverse molecular arrangements. Because most environmentally relevant boron minerals are highly soluble in water, it is unlikely that mineral equilibria will control the fate of boron in water. Boron was found to not be significantly removed during the conventional treatment of waste water. Boron may, however, be co-precipitated with aluminum, silicon, or iron to form hydroxyborate compounds on the surfaces of minerals. Waterborne boron may be adsorbed by soils and sediments. Adsorption-desorption reactions are expected to be the only significant mechanism that will influence the fate of boron in water. The extent of boron adsorption depends on the pH of the water and the chemical composition of the soil. The greatest adsorption is generally observed at pH 7.5-9.0. the single most important property of soil that will influence the mobility of boron is the abundance of amorphous aluminum oxide. The extent of boron adsorption has also been attributed to the levels of iron oxide, and to a lesser extent, the organic matter present in the soil, although other studies found that the amount of organic matter present was not important. The adsorption of boron may not be reversible in some soils. The lack of reversibility may be the result of solid-phase formation on mineral surfaces and/or the slow release of boron by diffusion from the interior of clay minerals. It is unlikely that boron is bioconcentrated significantly by organisms from water. A bioconcentration factor (BCF) relates the concentration of a chemical in the tissues of aquatic and terrestrial animals or plants to the concentration of the chemical in water or soil. The BCFs of boron in marine and freshwater plants, fish, and invertebrates were estimated to be <100. Experimentally measured BCFs for fish have ranged from 52 to 198. These BCFs suggest that boron is not significantly bioconcentrated. As an element, boron itself cannot be degraded in the environment; however, it may undergo various reactions that change the form of boron (e.g., precipitation, polymerization, and acid-base reactions) depending on conditions such as its concentration in water and pH. In nature, boron in generally found in its oxygenated form. In aqueous solution, boron is normally present as boric acid and borate ions, with the dominant form of inorganic boron in natural aqueous systems as undissociated boric acid. Boric acid acts as an electron acceptor in aqueous solution, accepting an hydroxide ion from water to form (B(OH)4)-ion. In dilute solution, the favored form of boron is B(OH)4. In more concentrated solutions (>0.1 M boric acid) and at neutral to alkaline pH (6– 11), polymeric species are formed (e.g., B3O3(OH)4-, B5O6(OH)4-, B3O3(OH)52-, and B4O5(OH)42-) Most boron compounds are transformed to borates in soil due to the presence of moisture. Borates themselves are not further degraded in soil. However, borates can exist in a variety of forms in soil . Borates are removed from soils by water leaching and by assimilation by plants. The most appreciable boron exposure to the general population is likely to be ingestion of food and to a lesser extent in water. As boron is a natural component of the environment, individuals will have some exposure from foods and drinking water Boron-containing salts (borates) are ubiquitous in the environment. Surface soil, unpolluted waterways and seawater all typically contain significant amounts of boron as borate. Boron is an essential micronutrient for healthy growth of plants, however, it can be harmful to boron sensitive plants in higher quantities. In some areas such as the American Southwest, boron occurs naturally in surface waters in concentrations that have been shown to be toxic to commercially important plants. Based on the collected information regarding aquatic toxicity, boron is not regarded as dangerous to aquatic organisms. The concentration in treated municipal waste water is a factor 100 lower than the NOEC-value for Daphnia magna. No quality criteria exist for the concentration of boron in soil and compost. Boron is added to farmland when sewage sludge is applied as a soil improving agent, but there is not sufficient data to evaluate its effect on soil organisms. Being an essential micro-nutrient, no adverse effects of boron are expected at low concentrations. Ecotoxicity: In aquatic environments low concentrations of borates generally promote the growth of algae, whereas higher concentrations inhibited algal growth. In a growth inhibition test with Scenedesmus subspicatus, an EC50 value of 34 mg B/I was determined. Boric acid toxicity in Daphnia 48 h-LC50 (static test) was found to be 95 mg B/I. In a separate study it was concluded that chronic effects of boron to Daphnia may occur at a concentration of > 10 mg/I. The toxicity of boron in fish is often higher in soft water than in hard water. The acute toxicity of boron towards Danio rerio (96 h-LC50) has been determined to 14.2 mg B/I. In a fish early life stage test with rainbow trout NOEC levels of boron have been determined in the range between 0.009 and 0.103 mg B/I, whereas the EC50 ranged from 27 to 100 mg B/I dependent on the water hardness. ■ DO NOT discharge into sewer or waterways. #### **Section 13 - DISPOSAL CONSIDERATIONS** #### **Disposal Instructions** All waste must be handled in accordance with local, state and federal regulations. | Puncture containers to prevent re-use and bury at an authorized landfill. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - Reuse - Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal. For small quantities: - Cautiously dissolve in water. - Neutralize with sodium carbonate or if product does not dissolvecompletely add a small quantity of hydrochloric acid followed bysodium carbonate. - Add excess calcium chloride to precipitate the fluoride and/or carbonate. - Remove solids to site approved for hazardous wastes. - Recycle wherever possible. - Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material) Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. #### **Section 14 - TRANSPORTATION INFORMATION** #### DOT: | Symbols: | None | Hazard class or Division: | 6.1 | | | |---|--------|--|--------------------|--|--| | Identification Numbers: | UN2811 | PG: | III | | | | Label Codes: | 6.1 | Special provisions: | IB8, IP3, T1, TP33 | | | | Packaging: Exceptions: | 153 | Packaging: Non-bulk: | 213 | | | | Packaging: Exceptions: | 153 | Quantity limitations: Passenger aircraft/rail: | 100 kg | | | | Quantity
Limitations: Cargo aircraft only: | 200 kg | Vessel stowage: Location: | Α | | | | Vessel stowage: Other: | None | | | | | | Hazardous materials descriptions and proper shipping names: | | | | | | Hazardous materials descriptions and proper shipping names. Toxic solids, organic, n.o.s. **Air Transport IATA:** ICAO/IATA Class:6.1ICAO/IATA Subrisk:NoneUN/ID Number:2811Packing Group:IIISpecial provisions:A3 Shipping Name: TOXIC SOLID, ORGANIC, N.O.S. *(CONTAINS TETRAETHYLAMMONIUM TETRAFLUOROBORATE) **Maritime Transport IMDG:** IMDG Class:6.1IMDG Subrisk:NoneUN Number:2811Packing Group:IIIEMS Number:F-A, S-ASpecial provisions:223 274 Limited Quantities: 5 kg Shipping Name: TOXIC SOLID, ORGANIC, N.O.S.(contains tetraethylammonium tetrafluoroborate) ## **Section 15 - REGULATORY INFORMATION** #### **REGULATIONS** tetraethylammonium tetrafluoroborate (CAS: 429-06-1) is found on the following regulatory lists; "Canada Non-Domestic Substances List (NDSL)","US Toxic Substances Control Act (TSCA) - Inventory" ## **Section 16 - OTHER INFORMATION** #### **LIMITED EVIDENCE** - Cumulative effects may result following exposure*. - * (limited evidence). Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL. ■ Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references. ■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. Issue Date: Oct-19-2009 Print Date:Jul-14-2010