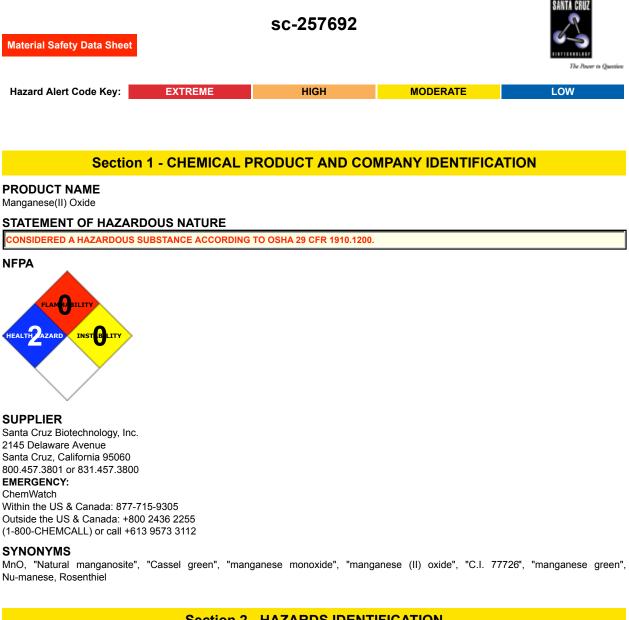


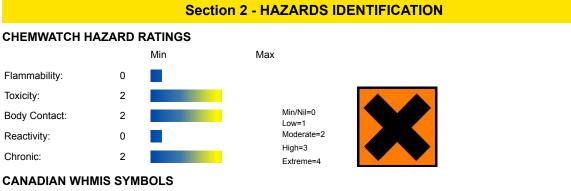
Produktinformation

Forschungsprodukte & Biochemikalien
Zellkultur & Verbrauchsmaterial
Diagnostik & molekulare Diagnostik
Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart siehe unsere Liefer- und Versandbedingungen


Zuschläge


- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 F. +43(0)1 489 3961-7 <u>mail@szabo-scandic.com</u> www.szabo-scandic.com

Manganese(II) Oxide

EMERGENCY OVERVIEW

RISK

Harmful by inhalation, in contact with skin and if swallowed. Irritating to eyes, respiratory system and skin.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

Poisonings rarely occur after oral administration of manganese salts because they are poorly absorbed from the gut.

EYE

This material can cause eye irritation and damage in some persons.

SKIN

- Skin contact with the material may be harmful; systemic effects may resultfollowing absorption.
- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine
- the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- Inhalation of dusts, generated by the material, during the course of normalhandling, may be harmful.
- The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

■ Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

■ Manganese fume is toxic and produces nervous system effects characterized by tiredness. Acute poisoning is rare although acute inflammation of the lungs may occur.<\div>.

CHRONIC HEALTH EFFECTS

■ Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.

<\p>.

Manganese is an essential trace element. Chronic exposure to low levels of manganese can include a mask-like facial expression, spastic gait, tremors, slurred speech, disordered muscle tone, fatigue, anorexia, loss of strength and energy, apathy and poor concentration.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

NAME	CAS RN	%
manganous oxide	1344-43-0	>90

Section 4 - FIRST AID MEASURES

SWALLOWED

· IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. · Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:

EYE

■ If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN

■ If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available).

INHALED

· If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested.

NOTES TO PHYSICIAN

Both dermal and oral toxicity of manganese salts is low because of limited solubility of manganese. No known permanent pulmonary sequelae develop after acute manganese exposure.

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG):	Not applicable.
Upper Explosive Limit (%):	Not applicable
Specific Gravity (water=1):	5.43-5.46
Lower Explosive Limit (%):	Not applicable

EXTINGUISHING MEDIA

• There is no restriction on the type of extinguisher which may be used.

Use extinguishing media suitable for surrounding area.

FIRE FIGHTING

 \cdot Alert Emergency Responders and tell them location and nature of hazard.

· Wear breathing apparatus plus protective gloves for fire only.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

· Non combustible.

• Not considered to be a significant fire risk, however containers may burn. Decomposition may produce toxic fumes of: metal oxides.

May emit poisonous fumes.

May emit corrosive fumes. FIRE INCOMPATIBILITY

None known.

PERSONAL PROTECTION

Glasses:

Chemical goggles. Gloves: Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Remove all ignition sources.
- · Clean up all spills immediately.
- · Avoid contact with skin and eyes.
- · Control personal contact by using protective equipment.
- · Use dry clean up procedures and avoid generating dust.
- · Place in a suitable, labelled container for waste disposal.
- MAJOR SPILLS
- Moderate hazard.
- · CAUTION: Advise personnel in area.
- · Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- · Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.

RECOMMENDED STORAGE METHODS

- · Polyethylene or polypropylene container.
- \cdot Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- · Store in original containers.
- · Keep containers securely sealed.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS Source Material TWA ppm TWA mg/m³ STEL ppm STEL mg/m³ Peak mg/m³ Notes

US - California Permissible Exposure Limits for Chemical Contaminants	manganous oxide (Manganese and compounds, as Mn)	0.2			
US - Idaho - Limits for Air Contaminants	manganous oxide (Manganese compounds (as Mn))			5	
US NIOSH Recommended Exposure Limits (RELs)	manganous oxide (Manganese compounds and fume (as Mn))	1	3		[*Note: Also see specific listings for Manganese cyclopentadienyl tricarbonyl, Methyl cyclopentadienyl manganese tricarb
US - Minnesota Permissible Exposure Limits (PELs)	manganous oxide (Manganese compounds (as Mn))			5	
US - Minnesota Permissible Exposure Limits (PELs)	manganous oxide (Manganese fume (as Mn))	1	3		
US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants	(Manganese fume	(C)5			
US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants	manganous oxide (Manganese compounds (as Mn))			5	
US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants	manganous oxide (Manganese fume (as Mn))	1	3		
US - Idaho - Limits for Air Contaminants	manganous oxide (Manganese fume (as Mn))			5	
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	manganous oxide (Manganese compounds (as Mn))			5	
US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants	manganous oxide (Manganese compounds (as Mn))	(C)5			
US - Hawaii Air Contaminant Limits	manganous oxide (Manganese fume (as Mn))	1	3		
US - Alaska Limits for Air Contaminants	manganous oxide (Manganese Compounds (as Mn))			5	
US - Michigan Exposure Limits for Air Contaminants	manganous oxide (Manganese, Compounds (as Mn))			5	
Canada - Yukon Permissible Concentrations for Airborne Contaminant Substances	manganous oxide (Manganese and compounds (as Mn))	5 -	-		

US - Washington Permissible exposure limits of air contaminants	manganous oxide (Manganese and compounds (as Mn))			5	
US - Hawaii Air Contaminant Limits	manganous oxide (Manganese compounds (as Mn))			5	
Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)	manganous oxide (Manganese (as Mn): Dust and compounds)	5			
US OSHA Permissible Exposure Levels (PELs) - Table Z1	manganous oxide (Manganese compounds (as Mn))			5	
US OSHA Permissible Exposure Levels (PELs) - Table Z1	manganous oxide (Manganese fume (as Mn))			5	
US - Oregon Permissible Exposure Limits (Z-1)	manganous oxide (Manganese fume (as Mn))			5	
Canada - Northwest Territories Occupational Exposure Limits (English)	manganous oxide (Manganese & compounds (as Mn))			5	
Canada - Northwest Territories Occupational Exposure Limits (English)	manganous oxide (Manganese fume (as Mn))	1	3		
Canada - Alberta Occupational Exposure Limits	manganous oxide (Manganese, elemental & inorganic compounds, as Mn)	0.2			
Canada - Ontario Occupational Exposure Limits	manganous oxide (Manganese, and inorganic compounds (as manganese))	0.2			
Canada - British Columbia Occupational Exposure Limits	manganous oxide (Manganese - Elemental & inorganic compounds, as Mn)	0.2			R
Canada - Nova Scotia Occupational Exposure Limits	manganous oxide (Manganese - Elemental & inorganic cmpds (as Mn))	0.2			TLV Basis: central nervous system impairment
Canada - Saskatchewan Occupational Health and Safety Regulations - Contamination Limits	manganous oxide (Manganese and inorganic compounds, (as Mn))	0.2	0.6		
US ACGIH Threshold Limit Values (TLV)	manganous oxide (Manganese - Elemental & inorganic cmpds (as Mn))	0.2			TLV Basis: central nervous system impairment

Canada - Prince Edward Island Occupational Exposure Limits	manganous oxide (Manganese - Elemental & inorganic cmpds (as Mn))	0.2		TLV Basis: central nervous system impairment
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	manganous oxide (Manganese compounds (as Mn))		5	
US - Oregon Permissible Exposure Limits (Z-1)	manganous oxide (Manganese Compounds (as Mn))		5	

ENDOELTABLE

PERSONAL PROTECTION

RESPIRATOR

Particulate

Consult your EHS staff for recommendations

EYE

- · Safety glasses with side shields.
- · Chemical goggles.

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- · frequency and duration of contact,
- · chemical resistance of glove material,
- · glove thickness and
- · dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

• When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.

· When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.

· Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- · polychloroprene
- · nitrile rubber
- · butyl rubber
- · fluorocaoutchouc
- · polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- · Overalls.
- · P.V.C. apron.
- · Barrier cream.
- · Skin cleansing cream.
- · Eye wash unit.

ENGINEERING CONTROLS

■ Local exhaust ventilation usually required. If risk of overexposure exists, wear an approved respirator.

<\p>.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid. Does not mix with water.

Sinks in water.			
State	Divided solid	Molecular Weight	70.94
Melting Range (°F)	Not available	Viscosity	Not Applicable
Boiling Range (°F)	Not available	Solubility in water (g/L)	Immiscible
Flash Point (°F)	Not applicable	pH (1% solution)	Not applicable.
Decomposition Temp (°F)	Not available	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not applicable	Vapour Pressure (mmHG)	Not applicable.
Upper Explosive Limit (%)	Not applicable	Specific Gravity (water=1)	5.43-5.46
Lower Explosive Limit (%)	Not applicable	Relative Vapor Density (air=1)	Not applicable.
Volatile Component (%vol)	Not applicable.	Evaporation Rate	Not applicable

APPEARANCE

Greenish crystalline powder with no odour. Insoluble in water. Occurs naturally as the mineral manganosite of cubic crystalline form.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

 \cdot Presence of incompatible materials.

· Product is considered stable.

STORAGE INCOMPATIBILITY

· WARNING: Avoid or control reaction with peroxides. All transition metal peroxides should be considered as potentially explosive. For example transition metal complexes of alkyl hydroperoxides may decompose explosively.

• The pi-complexes formed between chromium(0), vanadium(0) and other transition metals (haloarene-metal complexes) and mono-or poly-fluorobenzene show extreme sensitivity to heat and are explosive.

· Avoid reaction with borohydrides or cyanoborohydrides.

· Metals and their oxides or salts may react violently with chlorine trifluoride and bromine trifluoride.

These trifluorides are hypergolic oxidisers. They ignites on contact (without external source of heat or ignition) with recognised fuels - contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition.

· The state of subdivision may affect the results.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

MANGANOUS OXIDE

TOXICITY AND IRRITATION

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

• Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

No data of toxicological significance identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

No data

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

Reduction

· Reuse

· Recycling

· Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- \cdot Recycle wherever possible or consult manufacturer for recycling options.
- · Consult Waste Management Authority for disposal.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

REGULATIONS

manganous oxide (CAS: 1344-43-0) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)","OECD Representative List of High Production Volume (HPV) Chemicals","US DOE Temporary Emergency Exposure Limits (TEELs)","US Food Additive Database","US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

Cumulative effects may result following exposure*.

* (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

• The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Feb-23-2008 Print Date:Oct-21-2010