

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

Tin(IV) phthalocyanine dichloride

sc-356157

Material Safety Data Sheet

The Power to Oscotion

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Tin(IV) phthalocyanine dichloride

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

HEALT AZARD INST BLITY

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and Canada:

877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436

2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

■ Colourant. Phthalocyanine is a macrocyclic compound, It consists of four isoindole-class [(C6H4)C2N] units linked by four nitrogen atoms to form a conjugated chain, which take play in hosting various different metal ions in its centre. This macrocyclic structure like porphyrins(biopigments) is highly coloured Phthalocyanine derivatives derived from the basic compound of (C6H4C2N)4N4 are used as light-fast blue or green pigments. The hosted metals and substituted groups result in distinct colors; phthalocyanine (blue-green), copper phthalocyanine (blue), chlorinated copper phthalocyanine (green), and sulfonated copper phthalocyanine (green). They have also been involved in the study of photosensitizer chemistry or metal complex chemistry such as transition-metal complex catalyst chemistry for uniform polymerization, luminescence chemistry and spectrophotometric analysis, organic synthesis and polymerization. Phthalocyanine pigments are used in enamels, linoleum, inks, plastics, and rubber goods. Photoisomerizable phthalocyanines are used in rewritable CD or DVD printing. Some phthalocyanines such as fluoraluminium phthalocyanine are used in cancer treatment. Due to pi-electron cloud overlaps, phthalocyanines exhibit semiconductor property. Organic semiconductors have some merits of self radiation, flexibility, light weight, easy fabrication, and low cost. They have been investigated as organic electroluminescence materials for the applications in organic solar cells, biosensitizers and display devices such as OLED(Organic Light Emitting Diode), OTFT(Organic Thin Film Transistor), Wearable Display, and e-paper. Intermediate

SYNONYMS

C32-H16-Cl2-N8-Sn

Section 2 - HAZARDS IDENTIFICATION

CHEMWATCH HAZARD RATINGS

Min Max Flammability: 1 2 Toxicity: Min/Nil=0 **Body Contact:** 0 Low=1 Moderate=2 Reactivity: 1 High=3 Chronic: 2 Extreme=4

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW RISK

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be damaging to the health of the individual.
- Tin salts are not very toxic. However, at high concentration, nausea, vomiting and diarrhea can occur. At very high levels growth may be affected

EYE

■ Although the material is not thought to be an irritant, direct contact with the eve may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

SKIN

- The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of dusts, or fume, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.
- Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

■ Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

Chronic exposure to tin dusts and fume can result in substantial amounts being deposited in the lungs and result in reduced lung function and difficulty breathing.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS					
NAME	CAS RN	%			
tin(IV) phthalocyanine dichloride	18253-54-8	>98			

Section 4 - FIRST AID MEASURES

SWALLOWED

If swallowed do NOT induce vomiting.

- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness: i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

- If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- If pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin or hair contact occurs:
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

NOTES TO PHYSICIAN

■ Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES				
Vapour Pressure (mmHG):	Negligible			
Upper Explosive Limit (%):	Not available.			
Specific Gravity (water=1):	Not available			
Lower Explosive Limit (%):	Not available			

EXTINGUISHING MEDIA

- Foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.
- Water spray or fog Large fires only.

FIRE FIGHTING

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), hydrogen chloride, phosgene, nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles

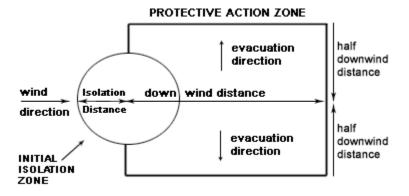
Gloves:

Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS


- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

■ Moderate hazard.

- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

PROTECTIVE ACTIONS FOR SPILL

From IERG (Canada/Australia)
Isolation Distance Downwind Protection Distance -

From US Emergency Response Guide 2000 Guide No guide found.

FOOTNOTES

1 PROTECTIVE ACTION ZONE is defined as the area in which people are at risk of harmful exposure. This zone assumes that random changes in wind direction confines the vapour plume to an area within 30 degrees on either side of the predominant wind direction, resulting in a crosswind protective action distance equal to the downwind protective action distance.

2 PROTECTIVE ACTIONS should be initiated to the extent possible, beginning with those closest to the spill and working away from the site in the downwind direction. Within the protective action zone a level of vapour concentration may exist resulting in nearly all unprotected persons becoming incapacitated and unable to take protective action and/or incurring serious or irreversible health effects.

3 INITIAL ISOLATION ZONE is determined as an area, including upwind of the incident, within which a high probability of localised wind reversal may expose nearly all persons without appropriate protection to life-threatening concentrations of the material.

4 SMALL SPILLS involve a leaking package of 200 litres (55 US gallons) or less, such as a drum (jerrican or box with inner containers). Larger packages leaking less than 200 litres and compressed gas leaking from a small cylinder are also considered "small spills". LARGE SPILLS involve many small leaking packages or a leaking package of greater than 200 litres, such as a cargo tank, portable tank or a "one-tonne" compressed gas cylinder.

5 Guide No guide found. is taken from the US DOT emergency response guide book.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.
- Do NOT cut, drill, grind or weld such containers.
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

•

- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

X: Must not be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA ppm	TWA mg/m³	STEL ppm	STEL mg/m³	Peak ppm	Peak mg/m³	TWA F/CC	Notes
US - Alaska Limits for Air Contaminants	tin(IV) phthalocyanine dichloride (Tin oxide (as Sn))		2						
US - Idaho - Limits for Air Contaminants	tin(IV) phthalocyanine dichloride (Tin (inorganic compounds, except oxides) as (Sn))		2						
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	tin(IV) phthalocyanine dichloride (Tin, inorganic compounds (except oxides) (as Sn))		2						
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	tin(IV) phthalocyanine dichloride (Tin, inorganic compounds (except oxides) (as Sn))		2						
US - Vermont Permissible Exposure Limits Table Z-1-A Final Rule Limits for Air Contaminants	tin(IV) phthalocyanine dichloride (Tin, inorganic compounds (except oxides) (as Sn))		2						
US - Vermont Permissible Exposure Limits Table Z-1-A Transitional Limits for Air Contaminants	tin(IV) phthalocyanine dichloride (Tin, inorganic compounds (except oxides) (as Sn))		2						
US - Michigan Exposure Limits for Air Contaminants	tin(IV) phthalocyanine dichloride (Tin, Inorganic compounds (except oxides)(as Sn))		2						
US - Alaska Limits for Air Contaminants	tin(IV) phthalocyanine dichloride (Tin, inorganic compounds (except oxides) (as Sn))		2						
US - Hawaii Air Contaminant Limits	tin(IV) phthalocyanine dichloride (Tin, inorganic compounds (except oxides) (as Sn))		2		4				
US - Oregon Permissible Exposure Limits (Z-1)	tin(IV) phthalocyanine dichloride (Tin (inorganic compounds, except oxides) as Sn)		2						
US - Michigan Exposure Limits for Air Contaminants	tin(IV) phthalocyanine dichloride (Tin, Inorganic compounds (except oxides) Oxides (as Sn))		2						
US - Michigan Exposure Limits for Air Contaminants	tin(IV) phthalocyanine dichloride (Tin, Inorganic compounds (except oxides) Organic compounds (as Sn))		0.1						

MATERIAL DATA

TIN(IV) PHTHALOCYANINE DICHLORIDE:

■ A TLV-TWA is recommended so as to minimize the risk of stannosis. The STEL (4.0 mg/m3) has been eliminated (since 1986) so that additional toxicological data and industrial hygiene experience may become available to provide a better base for quantifying on a toxicological basis what the STEL should in fact be.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- Safety glasses with side shields
- Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them.

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

RESPIRATOR

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These
 may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part
 of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

^{* -} Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used

ENGINEERING CONTROLS

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a
 certain proportion will be powdered by mutual friction.
- Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered.
 Such protection might consist of:
- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks
- Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant.

riesti circulating all required to eniciently remove the contaminant.	
Type of Contaminant:	Air Speed:
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favorable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only	2: Contaminants of high toxicity

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

3: High production, heavy use

4: Small hood-local control only

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

3: Intermittent, low production.

4: Large hood or large air mass in motion

Solid.

Does not mix with water.

State	Divided solid	Molecular Weight	702.14
Melting Range (°F)	Not available	Viscosity	Not available
Boiling Range (°F)	Not available	Solubility in water (g/L)	Partly miscible
Flash Point (°F)	Not available	pH (1% solution)	Not applicable
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available

Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	>1
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

Dark blue powder; does not mix well with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

_

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

■ Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

TIN(IV) PHTHALOCYANINE DICHLORIDE

TOXICITY AND IRRITATION

■ No significant acute toxicological data identified in literature search.

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

TIN(IV) PHTHALOCYANINE DICHLORIDE:

■ NOTE: Because of similarities in structure to thalidomide, concerns have been raised about the potential teratogenicity of all phthalimides (the basic building block of phthalocyanine. Animal studies, in part, appear to support this proposition

Phthalocyanine dyes are probably not biodegradable. Reversible reduction and decolourisation occurs under anaerobic conditions.

Many dyes are visible in water at concentrations as low as 1 mg/l Textile-processing waste waters, typically with a dye content in the range 10- 200 mg /l are therefore usually highly coloured and discharge in open waters presents an aesthetic problem. As dyes are designed to be chemically and photolytically stable, they are highly persistent in natural environments. The release of dyes may therefore present an ecotoxic hazard and introduces the potential danger of bioaccumulation that may eventually affect man by transport through the food chain.

Algae are generally susceptible to dyes, but the inhibitory effect is thought to be related to light inhibition at high dye concentrations, rather than a direct inhibitory effect of the dyes. This effect may account for up to 50% of the inhibition observed.

Virtually all dyes from all chemically distinct groups are prone to fungal oxidation but there are large differences between fungal species with respect to their catalysing power and dye selectivity. A clear relationship between dye structure and fungal dye biodegradability has not been established. Fungal degradation of aromatic structures is a secondary metabolic event that starts when nutrients (C, N and S) become limiting. Therefore, while the enzymes are optimally expressed under starving conditions, supplementation of energy substrates and nutrients are necessary for propagation of the cultures.

The effects of the substitutional pattern of the dyes are inconclusive, but it has been suggested that introduction of the functional groups; methyl, nitro, sulfo or acid, weakens the inhibition of bacteria, whereas introduction of chlorine and bromine strengthens the inhibition.

■ Tin may exist in either divalent (Sn2+) or tetravalent (Sn4+) cationic (positively charged) ions under environmental conditions. Tin(II) dominates in reduced (oxygen-poor) water, and will readily precipitate as a sulfide (SnS) or as a hydroxide (Sn(OH)2) in alkaline water. Tin(IV) readily hydrolyses, and can precipitate as a hydroxide. The solubility product of Sn(OH)4 has been measured at approximately 10 exp(-56) g/L at 25 °C. In general, tin(IV) would be expected to be the only stable ionic species in the weathering cycle.

Tin in water may partition to soils and sediments. Cations such as Sn2+ and Sn4+ will generally be adsorbed by soils to some extent, which reduces their mobility. Tin is generally regarded as being relatively immobile in the environment. However, tin may be transported in water if it partitions to suspended sediments, but the significance of this mechanism has not been studied in detail. Transfer coefficients for tin in a soil-plant system were reported to be 0.01-0.1.

A bioconcentration factor (BCF) relates the concentration of a chemical in plants and animals to the concentration of the chemical in the medium in which they live. It was estimated that the BCFs of inorganic tin were 100, 1,000, and 3,000 for marine and freshwater plants, invertebrates, and fish, respectively. Marine algae can bioconcentrate tin(IV) ion by a factor of 1,900.

Inorganic tin cannot be degraded in the environment, but may undergo oxidation-reduction, ligand exchange, and precipitation reactions. It has been established that inorganic tin can be transformed into organometallic forms by microbial methylation. Inorganic tin may also be converted to stannane (H4Sn) in extremely anaerobic (oxygen-poor) conditions by macroalgae.

■ DO NOT discharge into sewer or waterways.

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

REGULATIONS

tin(IV) phthalocyanine dichloride (CAS: 18253-54-8) is found on the following regulatory lists;

"Canada Non-Domestic Substances List (NDSL)","US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Inhalation and/or ingestion may produce health damage*.
- Cumulative effects may result following exposure*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

■ Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references.

■ The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Jan-13-2009 Print Date:Sep-4-2010