

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

ROM-K siRNA (m): sc-42633

The Power to Question

BACKGROUND

ROM-K, an ATP-sensitive inward rectifying K+ channel (also designated KIR1.1), is a member of the Kir family of K+ channels that controls renal K+ secretion. These K+ channels more readily conduct an inward current rather than an outward current and are constituitively open. Inwardly rectifying K+ channels are a complex of four Kir (Kir1-6) subunits. ROM-K is activated by protein kinase A, and its activity is regulated by phosphatidylinositol 4,5-bisphosphate and intracellular pH. Alternative splicing of ROM-K mRNA yields various isoforms which are differentially expressed in nephrons of the mammalian kidney. Mutations in the ROM-K gene are linked to antenatal Bartter syndrome, an autosomal recessive disorder of renal electrolyte transport.

REFERENCES

- Hebert, S.C. 1995. An ATP-regulated, inwardly rectifying potassium channel from rat kidney (ROMK). Kidney Int. 48: 1010-1016.
- Boim, M.A., et al. 1995. ROMK inwardly rectifying ATP-sensitive K+ channel. II. Cloning and distribution of alternative forms. Am. J. Physiol. 268: F1132-F1140.
- Kondo, C., et al. 1996. Cloning and functional expression of a novel isoform of ROMK inwardly rectifying ATP-dependent K+ channel, ROMK6 (Kir1.1f). FEBS Lett. 399: 122-126.
- 4. Zolotnitskaya, A., et al. 1999. Developmental expression of ROMK in rat kidney. Am. J. Physiol. 276: F825-F836.
- Flagg, T.P., et al. 1999. A mutation linked with Bartter's syndrome locks Kir 1.1a (ROMK1) channels in a closed state. J. Gen. Physiol. 114: 685-700.

CHROMOSOMAL LOCATION

Genetic locus: Kcnj1 (mouse) mapping to 9 A4.

PRODUCT

ROM-K siRNA (m) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see ROM-K shRNA Plasmid (m): sc-42633-SH and ROM-K shRNA (m) Lentiviral Particles: sc-42633-V as alternate gene silencing products.

For independent verification of ROM-K (m) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-42633A, sc-42633B and sc-42633C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

 $\ensuremath{\mathsf{ROM-K}}$ siRNA (m) is recommended for the inhibition of ROM-K expression in mouse cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

ROM-K (D-3): sc-393189 is recommended as a control antibody for monitoring of ROM-K gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor ROM-K gene expression knockdown using RT-PCR Primer: ROM-K (m)-PR: sc-42633-PR (20 μ l, 599 bp). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

SELECT PRODUCT CITATIONS

1. Liu, B.C., et al. 2015. Lovastatin-induced phosphatidylinositol-4-phosphate 5-kinase diffusion from microvilli stimulates ROMK channels. J. Am. Soc. Nephrol. 26: 1576-1587.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com