

Produktinformation

Forschungsprodukte & Biochemikalien
Zellkultur & Verbrauchsmaterial
Diagnostik & molekulare Diagnostik
Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien T. +43(0)1 489 3961-0 F. +43(0)1 489 3961-7 <u>mail@szabo-scandic.com</u> www.szabo-scandic.com

SANTA CRUZ BIOTECHNOLOGY, INC.

3β-HSD siRNA (h): sc-43584

BACKGROUND

3β-hydroxysteroid dehydrogenase (3β-HSD), also known as HSD3B1 or HSDB3, is a bifunctional enzyme that plays a crucial role in the synthesis of all classes of hormonal steroids. Two human 3β-HSD proteins, designated type I (3β-HSD) and type II (3β-HSD2), are expressed by different genes and function in different areas of the body. Localized to the membrane of the endoplasmic reticulum (ER) and expressed in skin and placenta, 3β-HSD is the type I protein that catalyzes the oxidative conversion of δ5-ene-3-βhydroxy steroid, as well as the conversion of various ketosteroids. Defects in the gene encoding 3β-HSD are associated with classic salt wasting, genital ambiguity, hypogonadism, Insulin-resistant polycystic ovary syndrome (PCOS) and an increased susceptibility to prostate cancer. Additionally, congenital deficiency of 3β-HSD activity results in a severe depletion of steroid formation which can be lethal in young children.

REFERENCES

- 1. Thomas, J.L., et al. 2002. Structure/function relationships responsible for the kinetic differences between human type 1 and type 2 3β -hydroxysteroid dehydrogenase and for the catalysis of the type 1 activity. J. Biol. Chem. 277: 42795-42801.
- Thomas, J.L., et al. 2003. Structure/function relationships responsible for coenzyme specificity and the isomerase activity of human type 1 3β-hydroxysteroid dehydrogenase/isomerase. J. Biol. Chem. 278: 35483-35490.
- 3. Foti, D.M., et al. 2004. YY1 binding within the human HSD3B2 gene intron 1 is required for maximal basal promoter activity: identification of YY1 as the 3β 1-A factor. J. Mol. Endocrinol. 33: 99-119.
- 4. Thomas, J.L., et al. 2004. Serine 124 completes the Tyr, Lys and Ser triad responsible for the catalysis of human type 1 3β -hydroxysteroid dehydrogenase. J. Mol. Endocrinol. 33: 253-261.

CHROMOSOMAL LOCATION

Genetic locus: HSD3B1 (human) mapping to 1p12.

PRODUCT

3 β -HSD siRNA (h) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see 3 β -HSD shRNA Plasmid (h): sc-43584-SH and 3 β -HSD shRNA (h) Lentiviral Particles: sc-43584-V as alternate gene silencing products.

For independent verification of 3β -HSD (h) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3 nmol of lyophilized siRNA. These include: sc-43584A, sc-43584B and sc-43584C.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

 $3\beta\text{-HSD}$ siRNA (h) is recommended for the inhibition of $3\beta\text{-HSD}$ expression in human cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 μ M in 66 μ l. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

GENE EXPRESSION MONITORING

 3β -HSD (A-1): sc-515120 is recommended as a control antibody for monitoring of 3β -HSD gene expression knockdown by Western Blotting (starting dilution 1:200, dilution range 1:100-1:1000) or immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500).

To ensure optimal results, the following support reagents are recommended: 1) Western Blotting: use m-lgG κ BP-HRP: sc-516102 or m-lgG κ BP-HRP (Cruz Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz MarkerTM Molecular Weight Standards: sc-2035, UltraCruz[®] Blocking Reagent: sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunofluorescence: use m-lgG κ BP-FITC: sc-516140 or m-lgG κ BP-PE: sc-516141 (dilution range: 1:50-1:200) with UltraCruz[®] Mounting Medium: sc-24941 or UltraCruz[®] Hard-set Mounting Medium: sc-359850.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor 3 β -HSD gene expression knockdown using RT-PCR Primer: 3 β -HSD (h)-PR: sc-43584-PR (20 μ I). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.