

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

HoxB13 siRNA (m): sc-45668

The Power to Question

BACKGROUND

HOX genes play a fundamental role in the development of the vertebrate central nervous system, heart, axial skeleton, limbs, gut, urogenital tract and external genitalia. HoxB13 is a sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. HoxB13 is highly expressed in the prostate gland from the embryonic stages to adulthood and is required for normal differentiation and secretory function of that organ. HoxB13 is primarily expressed in the nucleus, but is cytoplasmic throughout fetal skin development and some hyperproliferative skin conditions.

REFERENCES

- Nakahara, Y., et al. 1992. Allergic bronchopulmonary aspergillosis caused by Aspergillus terreus presenting lobar collapse. Intern. Med. 31: 140-142.
- Zeltser, L., et al. 1996. HoxB13: a new Hox gene in a distant region of the HOXB cluster maintains colinearity. Development 122: 2475-2484.
- 3. Stelnicki, E.J., et al. 1998. Modulation of the human homeobox genes PRX2 and HOXB13 in scarless fetal wounds. J. Invest. Dermatol. 111: 57-63.
- Economides, K.D., et al. 2003. HoxB13 is required for normal differentiation and secretory function of the ventral prostate. Development 130: 2061-2069.
- 5. Komuves, L.G., et al. 2003. HoxB13 homeodomain protein is cytoplasmic throughout fetal skin development. Dev. Dyn. 227: 192-202.
- 6. Jung, C., et al. 2004. HoxB13 homeodomain protein suppresses the growth of prostate cancer cells by the negative regulation of T cell factor 4. Cancer Res. 64: 3046-3051.
- 7. Ma, X.J., et al., 2004. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5: 607-616.
- 8. Dhanasekaran, S.M., et al. 2005. Molecular profiling of human prostate tissues: insights into gene expression patterns of prostate development during puberty. FASEB J. 19: 243-245.
- 9. Zhao, Y., et al. 2005. Regulation of tumor invasion by HOXB13 gene overexpressed in human endometrial cancer. Oncol. Rep. 13: 721-726.

CHROMOSOMAL LOCATION

Genetic locus: Hoxb13 (mouse) mapping to 11 D.

PRODUCT

HoxB13 siRNA (m) is a pool of 3 target-specific 19-25 nt siRNAs designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μM solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see HoxB13 shRNA Plasmid (m): sc-45668-SH and HoxB13 shRNA (m) Lentiviral Particles: sc-45668-V as alternate gene silencing products.

For independent verification of HoxB13 (m) gene silencing results, we also provide the individual siRNA duplex components. Each is available as 3.3 nmol of lyophilized siRNA. These include: sc-45668A, sc-45668B and sc-45668C.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20 $^{\circ}$ C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20 $^{\circ}$ C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

HoxB13 shRNA (m) Lentiviral Particles is recommended for the inhibition of HoxB13 expression in mouse cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor HoxB13 gene expression knockdown using RT-PCR Primer: HoxB13 (m)-PR: sc-45668-PR (20 μ l). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com