

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

Insulin I siRNA (r): sc-156136

The Power to Question

BACKGROUND

Insulin I is a secreted peptide hormone that elicits metabolic effects such as increases in glucose uptake and glycogen synthesis leading to a decrease in blood glucose concentration. Insulin I is first formed as a precursor molecule, preproinsulin, which is later cleaved to proinsulin and finally to the mature Insulin I hormone. Mature Insulin I consists of 51 amino acids, contained within an A chain and a B chain that are connected by two disulfide bridges. It increases cell permeability to monosaccharides, amino acids and fatty acids. Insulin I is secreted by the pancreas at basal levels in the absence of exogenous stimuli, with secretion increasing in response to glucose. Insulin I action is effected by the binding of Insulin I to cell-surface receptors on the target cell membrane. Defects of Insulin I are the cause of hyperproinsulinemia and of type 2 diabetes mellitus.

REFERENCES

- Kahn, C.R. 1985. The molecular mechanism of Insulin action. Annu. Rev. Med. 36: 429-451.
- 2. Lammers, R., et al. 1989. Differential signalling potential of Insulin- and IGF-1-receptor cytoplasmic domains. EMBO J. 8: 1369-1375.
- 3. Hilgert, I. et al. 1991. A monoclonal antibody applicable for determination of C-peptide of human proinsulin by RIA. Hybridoma 10: 379-86.
- Jorgensen, A.M., et al. 1996. Solution structure of the superactive monomeric des-[Phe(B25)] Insulin and the dimerization of native Insulin. J. Mol. Biol. 257: 684-699.
- Mackin, R.B. 1998. Proinsulin: recent observations and controversies.
 Cell. Mol. Life Sci. 54: 696-702.
- Soria, B., et al. 1998. Cytosolic oscillations and Insulin release in pancreatic islets of Langerhans. Diabetes Metab. 24: 37-40.
- 7. Walker, M., et al. 2005. Impaired β cell glucose sensitivity and whole-body Insulin sensitivity as predictors of hyperglycaemia in non-diabetic subjects. Diabetologia 48: 2470-2476.
- 8. Polak J, et al. 2005. Dynamic strength training improves Insulin sensitivity and functional balance between adrenergic α 2A and β pathways in subcutaneous adipose tissue of obese subjects. Diabetologia 48: 2631-2640.
- Chen, J., et al. 2006. Stevioside does not cause increased basal Insulin secretion or β-cell desensitization as does the sulphonylurea, glibenclamide: studies in vitro. Life Sci. 78: 1748-1753.

CHROMOSOMAL LOCATION

Genetic locus: Ins1 (rat) mapping to 1q55.

PRODUCT

Insulin I siRNA (r) is a target-specific 19-25 nt siRNA designed to knock down gene expression. Each vial contains 3.3 nmol of lyophilized siRNA, sufficient for a 10 μ M solution once resuspended using protocol below. Suitable for 50-100 transfections. Also see Insulin I shRNA Plasmid (r): sc-156136-SH and Insulin I shRNA (r) Lentiviral Particles: sc-156136-V as alternate gene silencing products.

STORAGE AND RESUSPENSION

Store lyophilized siRNA duplex at -20° C with desiccant. Stable for at least one year from the date of shipment. Once resuspended, store at -20° C, avoid contact with RNAses and repeated freeze thaw cycles.

Resuspend lyophilized siRNA duplex in 330 μ l of the RNAse-free water provided. Resuspension of the siRNA duplex in 330 μ l of RNAse-free water makes a 10 μ M solution in a 10 μ M Tris-HCl, pH 8.0, 20 mM NaCl, 1 mM EDTA buffered solution.

APPLICATIONS

Insulin I siRNA (r) is recommended for the inhibition of Insulin I expression in rat cells.

SUPPORT REAGENTS

For optimal siRNA transfection efficiency, Santa Cruz Biotechnology's siRNA Transfection Reagent: sc-29528 (0.3 ml), siRNA Transfection Medium: sc-36868 (20 ml) and siRNA Dilution Buffer: sc-29527 (1.5 ml) are recommended. Control siRNAs or Fluorescein Conjugated Control siRNAs are available as 10 µM in 66 µl. Each contain a scrambled sequence that will not lead to the specific degradation of any known cellular mRNA. Fluorescein Conjugated Control siRNAs include: sc-36869, sc-44239, sc-44240 and sc-44241. Control siRNAs include: sc-37007, sc-44230, sc-44231, sc-44232, sc-44233, sc-44234, sc-44235, sc-44236, sc-44237 and sc-44238.

RT-PCR REAGENTS

Semi-quantitative RT-PCR may be performed to monitor Insulin I gene expression knockdown using RT-PCR Primer: Insulin I (r)-PR: sc-156136-PR (20 μ I). Annealing temperature for the primers should be 55-60° C and the extension temperature should be 68-72° C.

RESEARCH USE

For research use only, not for use in diagnostic procedures.

PROTOCOLS

See our web site at www.scbt.com for detailed protocols and support products.

Santa Cruz Biotechnology, Inc. 1.800.457.3801 831.457.3801 Fax 831.457.3801 Europe +00800 4573 8000 49 6221 4503 0 www.scbt.com