

Produktinformation

Forschungsprodukte & Biochemikalien

Zellkultur & Verbrauchsmaterial

Diagnostik & molekulare Diagnostik

Laborgeräte & Service

Weitere Information auf den folgenden Seiten! See the following pages for more information!

Lieferung & Zahlungsart

siehe unsere Liefer- und Versandbedingungen

Zuschläge

- Mindermengenzuschlag
- Trockeneiszuschlag
- Gefahrgutzuschlag
- Expressversand

SZABO-SCANDIC HandelsgmbH

Quellenstraße 110, A-1100 Wien

T. +43(0)1 489 3961-0

F. +43(0)1 489 3961-7

mail@szabo-scandic.com

www.szabo-scandic.com

linkedin.com/company/szaboscandic in

Data Sheet (Cat.No.T0887)

D-Glucose

Chemical Properties

CAS No.: 50-99-7

Formula: C6H12O6

Molecular Weight: 180.16

Appearance: no data available

Storage: Powder: -20°C for 3 years | In solvent: -80°C for 1 year

Biological Description

Description	D-Glucose (Glucopyranose) is a monosaccharide, a natural glucose, a sweetener. D-Glucose is the main functional substance of living organisms, and is used as a nutrient in medicine, with diuretic, detoxification and cardiotonic effects.		
Targets(IC50)	Endogenous Metabolite		
In vitro	METHODS: Differentiated Caco-2 cells were stimulated with D-Glucose (125-500 mM) fo 5 min and serotonin levels were measured. RESULTS: Caco-2 cells released 5-hydroxytryptamine in response to D-Glucose similar to		
	enterochromaffin cells. In response to the highest tested concentration of 500 mM D-Glucose, 5-hydroxytryptamine levels in the supernatant of Caco-2 cells increased by 81.9±25.0%. [1]		
	METHODS: Retinal endothelial cells were treated with D-Glucose (30 mM) for 7 days and cell viability was measured by MTT assay.		
	RESULTS : The viability of endothelial cells exposed to high glucose was significantly reduced to 76.0±2.6% of the control. [2]		
In vivo	METHODS : For oral glucose tolerance test (OGTT), rats were starved for 6 h and orally administered MET (200 mg/kg) 1 h before glucose loading. Only distilled water was used as the vehicle in the control group. Wistar rats were fed 50% D-Glucose solution (4 g/kg) and GK diabetic rats were fed at 50% D-Glucose solution (1 g/kg). All blood samples were collected by tail flow 0-120 min after glucose administration and blood glucose was determined.		
	RESULTS : Rats receiving MET had a lower apical density of SGLT1 in the jejunum, lower levels of phosphorylated PKA substrate in enterocytes, and lower PGR compared to rats treated with excipients. [3]		

Solubility Information

Solubility Ethanol: <1 mg/mL (insoluble or slightly soluble),
br/>DMSO: 50 mg/mL (277.53 mM),
br/>H2O: 33 mg/mL (183.2 mM),
br/>(< 1 mg/ml refers to the product slightly soluble or insoluble)

Page 1 of 2 www.targetmol.com

Preparing Stock Solutions

	1mg	5mg	10mg
1 mM	5.5506 mL	27.7531 mL	55.5062 mL
5 mM	1.1101 mL	5.5506 mL	11.1012 mL
10 mM	0.5551 mL	2.7753 mL	5.5506 mL
50 mM	0.111 mL	0.5551 mL	1.1101 mL

Please select the appropriate solvent to prepare the stock solution, according to the solubility of the product in different solvents. Please use it as soon as possible.

Reference

Lieder B, et al. The flavanone homoeriodictyol increases SGLT-1-mediated glucose uptake but decreases serotonin release in differentiated Caco-2 cells. PLoS One. 2017 Feb 13;12(2):e0171580.

Inhibitor · Natural Compounds · Compound Libraries · Recombinant Proteins

This product is for Research Use Only · Not for Human or Veterinary or Therapeutic Use

Tel:781-999-4286 E_mail:info@targetmol.com Address:36 Washington Street,Wellesley Hills,MA 02481

Page 2 of 2 www.targetmol.com