2',3'-Dideoxyadenosine

sc-202406

Material Safety Data Sheet

The Power to Question

Hazard Alert Code Kev:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

2',3'-Dideoxyadenosine

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFΡΔ

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and

Canada: 877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436

2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Research tool for antiviral and anticancer studies. Exhibits antibacterial activity in mice and in vitro inhibition of the infectivity of HIV-1 (HTLV-III/LAV).

SYNONYMS

C10-H13-N5-O2, "adenosine, 2', 3'-dideoxy-", "adenosine, 2', 3'-dideoxy-", ddA, "antiviral/ antibacterial/ antineoplastic"

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be damaging to the health of the individual.
- The killing action of antineoplastic drugs used for cancer chemotherapy is not selective for cancerous cells alone but affect all dividing cells. Acute side effects include loss of appetite, nausea and vomiting, allergic reaction (skin rash, itch, redness, low blood pressure, unwellness and anaphylactic shock) and local irritation. Gout and renal failure can occur.

EYE

■ Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals.

SKIN

- The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified using animal models). Nevertheless, adverse effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

■ There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. Anti-cancer drugs used for chemotherapy can depress the bone marrow with reduction in the number of white blood cells and platelets and bleeding. Susceptibility to infections and bleeding is increased, which can be life- threatening. Digestive system effects may include inflammation of the mouth cavity, mouth ulcers, esophagus inflammation, abdominal pain and bleeds, diarrhea, bowel ulcers and perforation. Reversible hair loss can result and wound healing may be delayed. Long-term effects on the gonads may cause periods to stop and inhibit sperm production. Most anti-cancer drugs can potentially cause mutations and birth defects, and coupled with the effects of the suppression of the immune system, may also cause cancer.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

		Min	Max
Flammability:	1		
Toxicity:	2		
Body Contact:	0		Min/Nil=0
Reactivity:	1		Low=1 Moderate=2 High=3 Extreme=4
Chronic:	2		

NAME	CAS RN	%
2',3'-dideoxyadenosine	4097-22-7	>98

Section 4 - FIRST AID MEASURES

SWALLOWED

- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- · Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- · Seek medical advice.

FYF

- If this product comes in contact with the eyes:
- · Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- · If pain persists or recurs seek medical attention.
- · Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin or hair contact occurs:
- Flush skin and hair with running water (and soap if available).
- · Seek medical attention in event of irritation.

INHALED

- .
- If dust is inhaled, remove from contaminated area.
- Encourage patient to blow nose to ensure clear passage of breathing.
- If irritation or discomfort persists seek medical attention.

NOTES TO PHYSICIAN

■ Treat symptomatically.

For employees potentially exposed to antineoplastic and/ or cytotoxic agents on a regular basis, a preplacement physical examination and history (noting risk factors) is recommended. Periodic follow-up examinations should also be undertaken and should be overseen by a physician familiar with the toxic effects of the substance and full details of the nature of work undertaken by the employee. Following administration of antineoplastics, control of nausea and vomiting may be attempted by giving phenothiazines such as perphenazine, prochlorperazine, promethazine or thiethylperazine before antineoplastic agents are administered. In bone-marrow depression, transfusion of blood or platelets reduces the risk of life-threatening hemorrhage. Granulocyte transfusions and injection of antibiotics may be necessary to combat infection in the neutropenic patient. Hyperuricemia is avoided by the addition of allopurinol to treatment schedules and measures such as alkalization of the urine and hydration may be adopted. MARTINDALE: The Extra Pharmacopoeia, 28th Edition.

Section 5 - FIRE FIGHTING MEASURES			
Vapour Pressure (mmHG):	Negligible		
Upper Explosive Limit (%):	Not available.		
Specific Gravity (water=1):	Not available		

Lower Explosive Limit (%): **EXTINGUISHING MEDIA**

.

- Water spray or fog.
- Foam
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.

Not available

- · Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive
 mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the
 fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Gloves:

Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- It is recommended that areas handling final finished product have cytotoxic spill kits available. Spill kits should include:
- · impermeable body covering,
- · shoe covers
- · latex and utility latex gloves,
- goggles,
- approved HEPA respirator,
- disposable dust pan and scoop,
- absorbent towels,
- spill control pillows,
- disposable sponges,
- sharps container,
- disposable garbage bag and
- · hazardous waste label

To avoid accidental exposure due to waste handling of cytotoxics:

- Place waste residue in a segregated sealed plastic container.
- Used syringes, needles and sharps should not be crushed, clipped, recapped, but placed directly into an approved sharps container.
- Dispose of any cleanup materials and waste residue according to all applicable laws and regulations e.g, secure chemical landfill disposal.
- Clean up waste regularly and abnormal spills immediately.
- · Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- · Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- · Place in suitable containers for disposal.

All personnel likely to involved in a antineoplastic (cytotoxic) spill must receive practical training in:

- · the correct procedures for handling cytotoxic drugs or waste in order to prevent and minimize the risk of spills
- · the location of the skill kit in the area
- the arrangements for medical treatment of any affected personnel
- the procedure for containment of the spill, and decontamination of personnel and the environment, including the different procedures for major and minor spills
- · the procedure for waste disposal according to the nature and extent of the spill

MAJOR SPILLS

- Moderate hazard.
- · CAUTION: Advise personnel in area.
- · Alert Emergency Responders and tell them location and nature of hazard.
- · Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- · ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- · If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- The National Institute of Health (USA) recommends that the preparation of injectable antineoplastic drugs should be performed in a Class II laminar flow biological safety cabinet and that personnel preparing drugs of this class should wear appropriate personal protective gear. Emphasise controls on containment.
- Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.
- · Use in a well-ventilated area.
- · Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- · Launder contaminated clothing before re-use.
- · Use good occupational work practice.
- · Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- · Do NOT cut, drill, grind or weld such containers
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

- Glass container.
- Polyethylene or polypropylene container.
- · Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

- Antineoplastics (cytotoxics):
- should be clearly identifiable to all personnel involved in their handling
- should be stored in impervious break-resistant containers
- should be stored in separate, clearly marked storage areas to minimize the risk of breakage, and to limit contamination in the event of leakage.

Spill kits should be available in storage areas.

- · Store in original containers.
- · Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records

• 2',3'-dideoxyadenosine: CAS:4097-22-7

MATERIAL DATA

2',3'-DIDEOXYADENOSINE:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply. CEL TWA: 0.001 mg/m3.

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

- .
- Chemical protective goggles with full seal
- Shielded mask (gas-type)
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]

HANDS/FEET

- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
- Double gloving should be considered.
- · PVC gloves.
- · Protective shoe covers.
- · Head covering.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- · nitrile rubber
- · butyl rubber
- fluorocaoutchouc
- · polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- When handling antineoplastic materials, it is recommended that a disposal work-uniform (such as Tyvek or closed front surgical-type gown with knit cuffs) is worn.
- For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eye wash unit.
- Ensure there is ready access to an emergency shower.
- · For Emergencies: Vinyl suit

- . .

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity
 information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not
 subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered,
 positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory.
 These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested
 as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

KESF	ΗI	Or

Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
10 x PEL	P1	-	PAPR-P1
	Air-line*	-	-
50 x PEL	Air-line**	P2	PAPR-P2
100 x PEL	-	P3	-
		Air-line*	-
100+ x PEL	-	Air-line**	PAPR-P3

^{* -} Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica.

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

- Unless written procedures, specific to the workplace are available, the following is intended as a guide:
- For Laboratory-scale handling of Substances assessed to be toxic by inhalation. Quantities of up to 25 grams may be
 handled in Class II biological safety cabinets *; Quantities of 25 grams to 1 kilogram may be handled in Class II biological
 safety cabinets* or equivalent containment systems Quantities exceeding 1 kg may be handled either using specific
 containment, a hood or Class II biological safety cabinet*,
- HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors.
- The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated.

Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be evaluated. When handling: Quantities of up to 25 grams, an approved respirator with HEPA filters or cartridges should be considered Quantities of 25 grams to 1 kilogram, a half-face negative pressure, full negative pressure, or powered helmet-type air purifying respirator should be considered. Quantities in excess of 1 kilogram, a full face negative pressure, helmet-type air purifying, or supplied air respirator should be considered.

Written procedures, specific to a particular work-place, may replace these recommendations

* For Class II Biological Safety Cabinets, Types B2 or B3 should be considered. Where only Class I, open fronted Cabinets are available, glove panels may be added, Laminar flow cabinets do not provide sufficient protection when handling these materials unless especially designed to do so.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid

Mixes with water.

State	Divided solid	Molecular Weight	235.25
Melting Range (°F)	357.8- 363.2	Viscosity	Not Applicable
Boiling Range (°F)	Not available	Solubility in water (g/L)	Miscible
Flash Point (°F)	Not available	pH (1% solution)	Not available
Decomposition Temp (°F)	Not available.	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available.	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	Not Applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

White powder; mixes with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

2',3'-dideoxyadenosine

TOXICITY AND IRRITATION

Oral (mouse) LD50: 5000 mg/kg

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY **IRRITATION**

Subcutaneous (mouse) LD50: 1320 mg/kg

Section 12 - ECOLOGICAL INFORMATION

Nil Reported

Refer to data for ingredients, which follows: 2',3'-DIDEOXYADENOSINE:

■ For antineoplastics:

Ecotoxicity:

Because antineoplastics are genotoxic, mutagenic and carcinogenic concerns are warranted for their potential effect in the environment. There are a number of known mammalian toxic and nausea effects associated with antineoplastic treatment, which could indicate that similar effects, might be expected in non-target mammals, and possibly also in non-target species other than mammals. Total dosage over a whole therapy protocol is approximately 150 mg /kg body weight. Approximately 14-53% of the administered pharmaceutical is excreted unmetabolised into urine.

Antineoplastics as a class of drugs are of potential concern for environmental impacts, not just for their acute toxicity but perhaps more for their ability to effect subtle genetic changes, the cumulative impact of which over time can lead to more profound ecologic change. Hospitals are the major source of genotoxic drugs publicly-owned waste-water treatment works (POTWs) that service hospitals, especially multiple hospitals, are likely candidates for releasing these chemicals into surface

Antineoplastics are highly [geno]toxic compounds, primarily from hospitals, with poor removal from sewage treatment plants (STWs). Antineoplastic agents, antitumour agents primarily used only within hospitals for chemotherapy, are found sporadically and in a range of concentrations, probably because only small amounts are introduced to STWs via domestic sewage because of their long-lived physiologic retention.

These compounds act as nonspecific alkylating agents (i.e., specific receptors are not involved) and therefore have the potential to act as either acute or long-felt stressors (mutagens carcinogens/ teratogens/ embryotoxins) in any organism.

Using well-established QSAR modelling techniques almost 1/5 of the commonly used antineoplastics were predicted to be very toxic to algae, and close to 1/3 were predicted to be non-toxic to plants. A third of the compounds were predicted to be very toxic to daphnids, and almost half were predicted to be non-toxic to daphnids. Slightly more than 1/5 were predicted to be very toxic to fish, and 47% were predicted to be non-toxic to fish.

DO NOT discharge into sewer or waterways.

Ecotoxicity

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility 2',3'-dideoxyadenosine HIGH I OW HIGH

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- Antineoplastic (cytotoxic) wastes must be packed directly, ready for incineration, into color-coded, secure, labelled, leakproof containers sufficiently robust to withstand handling without breaking, bursting or leaking.
- Containers of special design are available for particular needs (such as disposal of sharps) and should be used.
- · Once filled and closed, such containers must never be re-opened.
- Immediate containers must bear a nationally accepted symbol or device depicting cytotoxic substances and be labelled with the words: CYTOTOXIC WASTE - INCINERATE in a style of lettering approved by the national/ state authority.
- Where policies and procedures permit the merging of cytotoxic wastes with medical waste in an outer container used for medical waste, cytotoxic waste must first be placed in identifiable color-coded/ labelled cytotoxic containers prior to
- Management procedures must ensure that merged medical and cytotoxic waste is subjected to the incineration requirements appropriate for the total destruction of the cytotoxic waste.

WASTE STORAGE OF CYTOTOXIC WASTES For the storage of cytotoxic waste, segregated or merged with medical waste,

- special storage areas with adequate lighting.
- waste security and restriction of access to authorized persons.
- storage areas designed to facilitate easy routine cleaning and maintenance to hygienic standards, or post-spill decontamination.
- · storage of cytotoxic waste in standard, identifying bins or other appropriate containers.

COLLECTION OF CYTOTOXIC WASTES

- Procedures for the collection of cytotoxic wastes, which are compatible with existing operational needs, and which protect workers, other people and the environment, must be developed.
- Waste must be removed from the site by contractors whose workers have been instructed in the protective methods to be used against the hazards involved, and who comply with the safe work practices established by internal and/or national/ state policies. Contractors must instruct, train and direct their personnel in the safe and legal handling of cytotoxic wastes. Contractor's personnel should observe the operating procedures of the waste-generator.
- Transport of cytotoxic wastes, through the community, must comply with the appropriate national/ state codes.

DESTRUCTION OF CYTOTOXIC WASTES

- Destruction of cytotoxic wastes should be carried out in multi-chambered incinerators, licenced for this purpose, operating at 1100 deg. C. or more, with a residence time of at least 1 second.
- Operators must be trained in handling procedures and hazards involved with handling the waste.
- Waste which arrives at the incinerator inappropriately packaged should NOT be returned to the waste generator. An authorized representative of the waste generator must attend the incinerator site to rectify the situation.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

2',3'-dideoxyadenosine (CAS: 4097-22-7) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Ingestion may produce health damage*.
- Limited evidence of a carcinogenic effect*.
 * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Oct-18-2009 Print Date:Apr-21-2010