# sc-203388

**Material Safety Data Sheet** 



Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

### Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

#### PRODUCT NAME

Sodium iodide

### STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

### **NFPA**



#### **SUPPLIER**

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and Canada:

877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436 2255

(1-800-CHEMCALL) or call +613 9573 3112

#### **PRODUCT USE**

Used in photography, solvent for iodine, organic chemicals, reagent, feed additive, cloud seeding, scintillation (thallium-activated form), expectorant.

### **SYNONYMS**

Nal, "sodium monoiodide", "sodium iodine", anayodin, ioduril

### **Section 2 - HAZARDS IDENTIFICATION**

### **CANADIAN WHMIS SYMBOLS**





# EMERGENCY OVERVIEW

Irritating to eyes, respiratory system and skin.

**POTENTIAL HEALTH EFFECTS** 

**ACUTE HEALTH EFFECTS** 

### sc-203388

**Material Safety Data Sheet** 



The Power to Question

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

#### **SWALLOWED**

■ The material has NOT been classified as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, unintentional ingestion is not thought to be cause for concern.

#### EYE

■ This material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Moderate inflammation may be expected with redness; conjunctivitis may occur with prolonged exposure.

#### SKIN

- The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterized by redness, swelling and blistering.
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds, lesions or abrasions.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

#### INHALED

- The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

### **CHRONIC HEALTH EFFECTS**

■ Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There is limited evidence that, skin contact with this product is more likely to cause a sensitization reaction in some persons compared to the general population.

Based on experience with animal studies, there is a possibility that exposure to the material may result in toxic effects to the development of the fetus, at levels which do not cause significant toxic effects to the mother.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray.

lodine and iodides, may give rise to local allergic reactions such as hives, rupture of skin blood vessels, pain in joints or diseases of the lymph nodes.

lodine and iodides cause goiter and diminished as well as increased activity of the thyroid gland. A toxic syndrome resulting from chronic iodide overdose and from repeated administration of small amounts of iodine is characterized by excessive saliva production, head cold, sneezing, conjunctivitis, headache, fever, laryngitis, inflammation of the bronchi and mouth cavity, inflamed parotid gland, and various skin rashes. Swelling and inflammation of the throat, irritated and swollen eyes and lung swelling may also occur. Swelling of the glottis, necessitating a tracheotomy has been reported. Use of iodides in frequency can cause fetal death, severe goiter, hypothyroidism and the cretinoid appearance of the newborn.

### Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

### **HAZARD RATINGS**

|               |   | Min | Max                 |
|---------------|---|-----|---------------------|
| Flammability: | 0 |     |                     |
| Toxicity:     | 0 |     |                     |
| Body Contact: | 2 |     | Min/Nil=0<br>Low=1  |
| Reactivity:   | 0 |     | Moderate=2          |
| Chronic:      | 2 |     | High=3<br>Extreme=4 |

NAME CAS RN % sodium iodide 7681-82-5 >99

## sc-203388





The Power is Quanti

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

### **Section 4 - FIRST AID MEASURES**

### **SWALLOWED**

.

- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor.

#### **EYE**

- If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- If pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

#### SKIN

- If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- · Seek medical attention in event of irritation.

#### **INHALED**

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained.
   Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

### **NOTES TO PHYSICIAN**

■ Treat symptomatically.

| Section 5 - FIRE FIGHTING MEASURES |                |  |  |  |  |
|------------------------------------|----------------|--|--|--|--|
| Vapor Pressure (mmHg):             | 0.975 @ 767 C  |  |  |  |  |
| Upper Explosive Limit (%):         | Not applicable |  |  |  |  |
| Specific Gravity (water=1):        | 3.67           |  |  |  |  |
| Lower Explosive Limit (%):         | Not applicable |  |  |  |  |

### **EXTINGUISHING MEDIA**

• There is no restriction on the type of extinguisher which may be used.

Use extinguishing media suitable for surrounding area.

## **FIRE FIGHTING**

- Alert Emergency Responders and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves for fire only.
- Prevent, by any means available, spillage from entering drains or water course.
- Use fire fighting procedures suitable for surrounding area.
- Do not approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

### GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Non combustible.
- Not considered to be a significant fire risk, however containers may burn.

# sc-203388

### **Material Safety Data Sheet**



The Power to Question

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

Decomposition may produce toxic fumes of: hydrogen iodide, metal oxides.

May emit poisonous fumes.

May emit corrosive fumes.

#### FIRE INCOMPATIBILITY

■ None known.

### PERSONAL PROTECTION

Glasses:

Safety Glasses.

Chemical goggles.

Gloves:

Respirator:

Particulate

### **Section 6 - ACCIDENTAL RELEASE MEASURES**

#### MINOR SPILLS

- Clean up all spills immediately.
- Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Sweep up, shovel up or vacuum up (consider explosion-proof machines designed to be grounded during storage and use).
- Place spilled material in clean, dry, sealable, labeled container.

### MAJOR SPILLS

- Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

### ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

### Section 7 - HANDLING AND STORAGE

### PROCEDURE FOR HANDLING

- -
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.

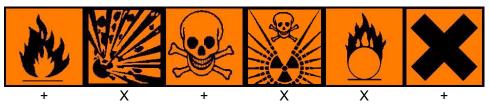
## sc-203388

## **Material Safety Data Sheet**



| Hazard Alert Code Key: | EXTREME | HIGH | MODERATE | LOW |
|------------------------|---------|------|----------|-----|
|------------------------|---------|------|----------|-----|

- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.


### **RECOMMENDED STORAGE METHODS**

- Glass container.
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.

### STORAGE REQUIREMENTS

- .
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

### SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS



- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

## Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

### **EXPOSURE CONTROLS**

| Source                                                           | Material                | TWA<br>ppm | TWA<br>mg/m³ | STEL<br>ppm | STEL<br>mg/m³ | Peak<br>ppm | Peak<br>mg/m³ | TWA<br>F/CC | Notes                                                               |
|------------------------------------------------------------------|-------------------------|------------|--------------|-------------|---------------|-------------|---------------|-------------|---------------------------------------------------------------------|
| US ACGIH Threshold Limit<br>Values (TLV)                         | sodium iodide (lodides) | 0.01       |              |             |               |             |               |             | TLV Basis:<br>Hypothyroidism; upper<br>respiratory tract irritation |
| Canada - Prince Edward<br>Island Occupational<br>Exposure Limits | sodium iodide (lodides) | 0.01       |              |             |               |             |               |             | TLV Basis:<br>Hypothyroidism; upper<br>respiratory tract irritation |
| Canada - Nova Scotia<br>Occupational Exposure<br>Limits          | sodium iodide (lodides) | 0.01       |              |             |               |             |               |             | TLV Basis:<br>Hypothyroidism; upper<br>respiratory tract irritation |

## sc-203388

### **Material Safety Data Sheet**



The Power to Question

| Hazard Alert Code Key:                                                                    | EXTREME                                                                                      | HIGH | MODERATE | LOW |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------|----------|-----|
| US - Oregon Permissible<br>Exposure Limits (Z3)                                           | sodium iodide (Inert or<br>Nuisance Dust: (d) Total<br>dust)                                 | 10   |          | *   |
| US OSHA Permissible<br>Exposure Levels (PELs) -<br>Table Z3                               | sodium iodide (Inert or<br>Nuisance Dust: (d)<br>Respirable fraction)                        | 5    |          |     |
| US OSHA Permissible<br>Exposure Levels (PELs) -<br>Table Z3                               | sodium iodide (Inert or<br>Nuisance Dust: (d) Total<br>dust)                                 | 15   |          |     |
| US - Hawaii Air<br>Contaminant Limits                                                     | sodium iodide<br>(Particulates not other<br>wise regulated - Total<br>dust)                  | 10   |          |     |
| US - Hawaii Air<br>Contaminant Limits                                                     | sodium iodide<br>(Particulates not other<br>wise regulated -<br>Respirable fraction)         | 5    |          |     |
| US - Oregon Permissible<br>Exposure Limits (Z3)                                           | sodium iodide (Inert or<br>Nuisance Dust: (d)<br>Respirable fraction)                        | 5    |          | *   |
| US - Tennessee<br>Occupational Exposure<br>Limits - Limits For Air<br>Contaminants        | sodium iodide<br>(Particulates not otherwise<br>regulated Respirable<br>fraction)            | 5    |          |     |
| US - Wyoming Toxic and<br>Hazardous Substances<br>Table Z1 Limits for Air<br>Contaminants | sodium iodide<br>(Particulates not otherwise<br>regulated (PNOR)(f)-<br>Respirable fraction) | 5    |          |     |
| US - Michigan Exposure<br>Limits for Air Contaminants                                     | sodium iodide<br>(Particulates not otherwise<br>regulated, Respirable<br>dust)               | 5    |          |     |
| Canada - British Columbia<br>Occupational Exposure<br>Limits                              | sodium iodide (lodides,<br>Inhalable Revised 2008)                                           | 0.01 |          |     |

### **MATERIAL DATA**

SODIUM IODIDE:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

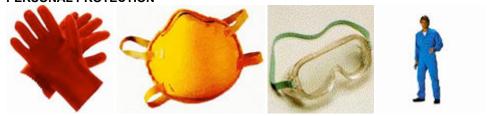
Sensory irritants are chemicals that produce temporary and undesirable side-effects on the eyes, nose or throat. Historically occupational exposure standards for these irritants have been based on observation of workers' responses to various airborne concentrations. Present day expectations require that nearly every individual should be protected against even minor sensory irritation and exposure standards are established using uncertainty factors or safety factors of 5 to 10 or more. On occasion animal no-observable-effect-levels (NOEL) are used to determine these limits where human results are unavailable. An additional approach, typically used by the TLV committee (USA) in determining respiratory standards for this group of chemicals, has been to assign ceiling values (TLV C) to rapidly acting irritants and to assign short-term exposure limits (TLV STELs) when the weight of evidence from irritation, bioaccumulation and other endpoints combine to warrant such a limit. In contrast the MAK Commission (Germany) uses a five-category system based on intensive odour, local irritation, and elimination half-life. However this system is being replaced to be consistent with the European Union (EU) Scientific Committee for Occupational Exposure Limits (SCOEL); this is more closely allied to that of the USA.

OSHA (USA) concluded that exposure to sensory irritants can:

- cause inflammation
- · cause increased susceptibility to other irritants and infectious agents

## sc-203388

### **Material Safety Data Sheet**




The Power to Oscotion

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

- lead to permanent injury or dysfunction
- permit greater absorption of hazardous substances and
- acclimate the worker to the irritant warning properties of these substances thus increasing the risk of overexposure.

### PERSONAL PROTECTION



Consult your EHS staff for recommendations

#### **EYE**

- \_
- · Safety glasses with side shields.
- · Chemical goggles.
- Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. DO NOT wear contact lenses.

#### HANDS/FEET

■ NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

#### **OTHER**

- .
- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.
- •
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an ontion)
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory. These may
  be government mandated or vendor recommended.

# sc-203388

### **Material Safety Data Sheet**



The Power to Question

| Hazard Alert Code Key: | EXTREME | HIGH | MODERATE | LOW |
|------------------------|---------|------|----------|-----|
|                        |         |      |          | _   |

- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a
  complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

#### **RESPIRATOR**

| Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator |
|-------------------|----------------------|----------------------|------------------------|
| 10 x PEL          | P1                   | -                    | PAPR-P1                |
|                   | Air-line*            | -                    | -                      |
| 50 x PEL          | Air-line**           | P2                   | PAPR-P2                |
| 100 x PEL         | -                    | P3                   | -                      |
|                   |                      | Air-line*            | -                      |
| 100+ x PFI        | _                    | Air-line**           | PAPR-P3                |

\* - Negative pressure demand \*\* - Continuous flow

**Explanation of Respirator Codes:** 

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica. Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required.

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

### **ENGINEERING CONTROLS**

- Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
- If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered.

Such protection might consist of:

- (a): particle dust respirators, if necessary, combined with an absorption cartridge;
- (b): filter respirators with absorption cartridge or canister of the right type;
- (c): fresh-air hoods or masks

Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

| Type of Contaminant:                                                                                                                                           | Air Speed:                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.)       |
| grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).           | 2.5-10 m/s (500-2000 f/min.)     |
| Within each range the appropriate value depends on:                                                                                                            |                                  |
| Lower end of the range                                                                                                                                         | Upper end of the range           |
| 1: Room air currents minimal or favorable to capture                                                                                                           | 1: Disturbing room air currents  |
| 2: Contaminants of low toxicity or of nuisance value only.                                                                                                     | 2: Contaminants of high toxicity |
| 3: Intermittent, low production.                                                                                                                               | 3: High production, heavy use    |
| 4: Large hood or large air mass in motion                                                                                                                      | 4: Small hood-local control only |

# sc-203388

**Material Safety Data Sheet** 



The Power to Question

| Hazard Alert Code Key: | EXTREME | HIGH | MODERATE | LOW |
|------------------------|---------|------|----------|-----|
|------------------------|---------|------|----------|-----|

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

### Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

### **PHYSICAL PROPERTIES**

Solid.

Mixes with water.

| State                     | Divided solid   | Molecular Weight               | 149.89         |
|---------------------------|-----------------|--------------------------------|----------------|
| Melting Range (°F)        | 1203.8          | Viscosity                      | Not Applicable |
| Boiling Range (°F)        | 2372            | Solubility in water (g/L)      | Miscible       |
| Flash Point (°F)          | Not applicable  | pH (1% solution)               | > 7            |
| Decomposition Temp (°F)   | Not available.  | pH (as supplied)               | Not applicable |
| Autoignition Temp (°F)    | Not applicable  | Vapor Pressure (mmHg)          | 0.975 @ 767 C  |
| Upper Explosive Limit (%) | Not applicable  | Specific Gravity (water=1)     | 3.67           |
| Lower Explosive Limit (%) | Not applicable  | Relative Vapor Density (air=1) | Not applicable |
| Volatile Component (%vol) | Not applicable. | Evaporation Rate               | Not applicable |

### **APPEARANCE**

Odourless, white crystals of powder. Slowly becomes brown in air. Deliquescent, saline, somewhat bitter taste. Soluble in water (159 g/100 ml @ 20 C.), alcohol and glycerol. Slightly alkaline.

### **Section 10 - CHEMICAL STABILITY**

### CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

### STORAGE INCOMPATIBILITY

■ Metals and their oxides or salts may react violently with chlorine trifluoride. Chlorine trifluoride is a hypergolic oxidizer. It ignites on contact (without external source of heat or ignition) with recognized fuels - contact with these materials, following an ambient or slightly elevated temperature, is often violent and may produce ignition. The state of subdivision may affect the results.

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

### Section 11 - TOXICOLOGICAL INFORMATION

sodium iodide

### **TOXICITY AND IRRITATION**

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY IRRITATION

Oral (rat) LD50: 4340 mg/kg Skin (rabbit):500 mg/24h-Moderate

Eye (rabbit):100 mg/24h - Moderate

■ Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic

# sc-203388

**Material Safety Data Sheet** 



The Power to Oscotion

Hazard Alert Code Key: EXTREME HIGH MODERATE LOW

condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

#### CARCINOGEN

lodides US ACGIH Threshold Limit Values (TLV) - Carcinogens Carcinogen Category A4

### Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

SODIUM IODIDE:

■ lodine is an important element in studies of environmental protection and human health, global-scale hydrologic processes and nuclear nonproliferation. Biogeochemical cycling of iodine is complex, because iodine occurs in multiple oxidation states and as inorganic and organic species that may be hydrophilic, atmophilic, and biophilic. Experiments illustrate complex behavior with various processes occurring, including iodate reduction, irreversible retention or mass loss of iodide, and rate-limited and nonlinear sorption. There was an appreciable iodate reduction to iodide, presumably mediated by the structural Fe(II) in some clay minerals; therefore, careful attention must be given to potential interconversion among species when interpreting the biogeochemical behavior of iodine in the environment.

lodine (I2) is electrochemically reduced to ionic iodide by natural processes but humic acid appears to promote the reaction. The different oxidation species of iodine have markedly different sorption properties. Hence, changes in iodine redox states can greatly affect the mobility of iodine in the environment. A major microbial role has been suggested in the past to account for at least some of these redox changes. Both soluble ferrous iron and sulfide, as well as iron monosulfide (FeS) were shown to abiologically reduce iodate to iodide. These results indicate that ferric iron and/or sulfate reducing bacteria are capable of mediating both direct, enzymatic, as well as abiotic reduction of iodate in natural anaerobic environments.

Environmental and geological evidence indicates that iodine can become associated with natural organic matter (NOM) in soils and sediments. Previous studies have shown that iodine (including 129II) can be strongly retained in organic-rich surface soils and sediment and that soluble iodine may be associated with dissolved humic material. Iodine and iodate undergo an abiotic pseudo first-order reaction with peat leading to either reduction of iodate or iodine to iodide or incorporation of the iodine atoms into the organic matrix. Iodine appears to be incorporated in sphagnum peat by aromatic substitution for hydrogen on phenolic constituents of the peat.

■ DO NOT discharge into sewer or waterways.

**Ecotoxicity** 

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility sodium iodide HIGH LOW HIGH

## **Section 13 - DISPOSAL CONSIDERATIONS**

### **Disposal Instructions**

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

## sc-203388

## **Material Safety Data Sheet**



Hazard Alert Code Key: **EXTREME HIGH MODERATE** LOW

- Recycle wherever possible or consult manufacturer for recycling options.
- Consult Waste Management Authority for disposal.
- Bury residue in an authorized landfill.
- Recycle containers where possible, or dispose of in an authorized landfill.

### **Section 14 - TRANSPORTATION INFORMATION**

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

### **Section 15 - REGULATORY INFORMATION**

### sodium iodide (CAS: 7681-82-5,13517-06-1) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)", "Canada Ingredient Disclosure List (SOR/88-64)", "Canada Toxicological Index Service -Workplace Hazardous Materials Information System - WHMIS (English)", "Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (French)", "US DOE Temporary Emergency Exposure Limits (TEELs)", "US Toxic Substances Control Act (TSCA) - Inventory"

### **Section 16 - OTHER INFORMATION**

### **LIMITED EVIDENCE**

- Cumulative effects may result following exposure\*.
- Possible skin sensitizer\*.
- May possibly be harmful to the fetus/ embryo\*.
- \* (limited evidence).

### Ingredients with multiple CAS Nos

Ingredient Name CAS

sodium iodide 7681-82-5, 13517-06-1

## REPRODUCTIVE HEALTH GUIDELINES

■ Established occupational exposure limits frequently do not take into consideration reproductive end points that are clearly below the thresholds for other toxic effects. Occupational reproductive guidelines (ORGs) have been suggested as an additional standard. These have been established after a literature search for reproductive no-observed-adverse effect-level (NOAEL) and the lowest-observed-adverseeffect-level (LOAEL). In addition the US EPA's procedures for risk assessment for hazard identification and dose-response assessment as applied by NIOSH were used in the creation of such limits. Uncertainty factors (UFs) have also been incorporated.

Ingredient ORG UF **Endpoint** CR Adeq TLV sodium iodide 1 mg/m3 NA NA NA

■ These exposure guidelines have been derived from a screening level of risk assessment and should not be construed as unequivocally safe limits. ORGS represent an 8-hour time-weighted average unless specified otherwise. CR = Cancer Risk/10000; UF = Uncertainty factor: TLV believed to be adequate to protect reproductive health: LOD: Limit of detection Toxic endpoints have also been identified as: D = Developmental; R = Reproductive; TC = Transplacental carcinogen Jankovic J., Drake F.: A Screening Method for Occupational Reproductive Health Risk: American Industrial Hygiene Association Journal 57: 641-649 (1996).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at:
- www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

# sc-203388

**Material Safety Data Sheet** 



| Hazard Alert Code Key: | EXTREME | HIGH | MODERATE | LOW |
|------------------------|---------|------|----------|-----|

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Sep-1-2009 Print Date:May-6-2010