Canrenone

sc-205616

Material Safety Data Sheet

The Power to Questio

Hazard Alert Code Key:

EXTREME

HIGH

MODERATE

LOW

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Canrenone

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

NFΡΔ

SUPPLIER

Company: Santa Cruz Biotechnology, Inc.

Address:

2145 Delaware Ave Santa Cruz, CA 95060

Telephone: 800.457.3801 or 831.457.3800

Emergency Tel: CHEMWATCH: From within the US and

Canada: 877-715-9305

Emergency Tel: From outside the US and Canada: +800 2436

2255 (1-800-CHEMCALL) or call +613 9573 3112

PRODUCT USE

Diuretic. A metabolite of spironolactone used as for parenteral administration. Spironolactone is a steroid with a structure similar to the natural adrenocortical hormone, aldosterone, which acts on the distal portion of the renal tubule as a competitive inhibitor of aldosterone. Increases sodium and water excretion and decreases potassium excretion. Acts both as a diuretic and antihypertensive agent. Used in the treatment of refractory oedema associated with congestive heart failure, cirrhosis of the liver or nephrotic syndrome.

SYNONYMS

C22-H28-O3, "3-oxo-17alpha-pregna-4, 6-diene-21, 17beta-carbolactone", "3-oxo-17alpha-pregna-4, 6-diene-21, 17beta-carbolactone", "(17alpha)-17-hydroxy-3-oxopregna-4, 6-diene-21-carboxylic acid gamma-", lactone, "17alpha-(2-carboxyethyl)-17beta-hydroxyandrosta-4, 6-dien-3-one lactone", "17alpha-(2-carboxyethyl)-17beta-hydroxyandrosta-4, 6-dien-3-one lactone", "17alpha-(2-carboxyethyl)-17beta-hydroxy-3-oxoandrosta-4, 6-diene lactone", "17alpha-(2-carboxyethyl)-17beta-hydroxy-3-oxoandrosta-4, 6-diene lactone", "6-dehydrotestosterone-17alpha-propionic acid gamma-lactone", "6-dehydrotestosterone-17alpha-propionic acid gamma-lactone", "3-(3-oxo-17beta-hydroxy-4, 6-androstadien-17alpha-yl)propionic acid", "gamma lactone", "3-(3-oxo-17beta-hydroxy-4, 6-androstadien-17alpha-yl)propionic acid", "pregna-4, 6-diene-21-carboxylic acid, 17-hydroxy-3-oxo-, gamma-lactone, ", (17alpha), "pregna-4, 6-diene-21-carboxyli

Section 2 - HAZARDS IDENTIFICATION

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Possible risk of irreversible effects. Harmful by inhalation and if swallowed. Toxic to aquatic organisms.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
- Large doses or frequent use of diuretics may produce fluid and electrolyte imbalance.

This, in turn, may produce increased urination, dry mouth, increased thirst, irregular heartbeat, mood or mental changes, muscle cramps or pain, nausea or vomiting, unusual tiredness or weakness, weak pulse, blurred vision, diarrhoea, headache, dizziness, loss of appetite,skin rash, pruritus, and stomach cramps or pain. Orthostatic hypotension may also result from excessive use.

Concern has been raised about the potential for diuretic-induced hypokalaemia, even when chronic or mild, to play a part in the development of ventricular arrhythmias, and sudden death. A trend towards increased mortality due coronary heart disease, in patients with pre-existing ECG abnormalities, has also been suggested in some studies.

■ Gynaecomastia (enlarged breasts) may occur in males undertaking therapy

Spironolactone which has relatively slow onset of action with 2-3 days elapsing before maximum effect is produced (spironolactone also has a similarly slow diminishment of effect over 2 or 3 days on discontinuation). Ingestion may give rise to headache, drowsiness and gastrointestinal disturbances, including cramp and diarrhoea. Other

Ingestion may give rise to headache, drowsiness and gastrointestinal disturbances, including cramp and diarrhoea. Other reported side-effects include ataxia, mental confusion, hirsutism, deepening of the voice, menstrual irregularities, impotence and skin rashes, enlargement of the breasts (gynaecomastia), which may persist, transient increases in blood urea-nitrogen, hyponatraemia and hypokalaemia.

The corticosteroids cause alterations in metabolism of fats, proteins and carbohydrates, and affect a range of organs in the body including the heart, muscle and kidneys. Blood chemistry may change and there is decreased activity and shrinkage of the thymus gland, adrenal glands, spleen and lymph nodes. The liver becomes enlarged, thyroid activity decreases, and mineral is drawn away from bone. Muscle wasting occurs, and the immune system is adversely affected causing the person to be more susceptible to infections, especially of the eye. Allergies can occur. Wound healing is slowed. In large doses, corticosteroids cause a severe chemical imbalance in the body's minerals, leading to salt and water being retained in the body, causing swelling and high blood pressure. This is more severe when natural rather than synthetic drugs are used. Blood glucose is raised, and in extreme cases the heart may fail. The characteristic "moon-face" appearance may be seen, with weakness of the muscles and bones, high blood pressure, cessation of periods, profuse sweating, mental disturbance, flushing, a humped back, hairiness, and obesity of the trunk with wasting of the arms and limbs ("lemon with matchsticks" shape). These generally improve when treatment is stopped. High pressure in the head, an inflamed pancreas and mental disturbance become more common, and bone tissue may die. The blood also condenses more easily leading to an increased risk of clots. Psychiatric changes include mood swings, personality changes, severe depression and psychosis (hallucinations and delusions). One should be beware of an increased susceptibility to a wide range of infections which may be masked by the ability of corticosteroids to reduce pain, inflammation and fever. Those with ulcers, gastrointestinal disease, kidney impairment, hypothyroidism, high blood pressure, liver damage and osteoporosis may be especially susceptible to the adverse effects of corticosteroids. Prolonged exposure can cause cataracts and eye nerve damage, leading to blind

EYE

- If applied to the eyes, this material causes severe eye damage.
- When applied to the eye, corticosteroids may produce ulceration of the cornea, raised eye pressure and reduced vision; internal administration can cause cataracts.

SKIN

- The material is not thought to be a skin irritant (as classified using animal models). Abrasive damage however, may result from prolonged exposures. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting.
- Skin contact with the material may damage the health of the individual; systemic effects may result following absorption.
- Open cuts, abraded or irritated skin should not be exposed to this material.
- Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
- Topically applied corticosteroids may be absorbed in sufficient quantity to produce systemic effects. Application to the skin may result in collagen loss and subcutaneous atrophy and local bleaching of deeply pigmented skin. Systemic absorption may produce adrenal suppression and collapse.

INHALED

- Inhalation of dusts, generated by the material, during the course of normalhandling, may be harmful.
- The material is not thought to produce respiratory irritation (as classified using animal models). Nevertheless inhalation of dusts, or fume, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
- Systemic absorption of aerosols containing corticosteroids may produceadrenal insufficiency and collapse.

CHRONIC HEALTH EFFECTS

■ Strong evidence exists that the substance may cause irreversible but non-lethal mutagenic effects following a single exposure.

Exposure to the material may result in a possible risk of irreversible effects. The material may produce mutagenic effects in man. This concern is raised, generally, on the basis of

appropriate studies using mammalian somatic cells in vivo. Such findings are often supported by positive results from in vitro mutagenicity studies.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There is limited evidence that, skin contact with this product is more likely to cause a sensitization reaction in some persons compared to the general population.

Exposure to the material may cause concerns for human fertility, on the basis that similar materials provide some evidence of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects.

Based on experience with animal studies, there is a possibility that exposure to the material may result in toxic effects to the development of the fetus, at levels which do not cause significant toxic effects to the mother.

Spironolactone produces thyroid and testicular tumours in rats. Potassium canrenoate, a metabolite of spironolactone in

humans, caused resorption in the offspring of mice administered 80 mg/kg during 7-13 days of pregnancy.

Spironolactone was found to block testosterone secretion and increase progesterone concentration without inducing cell mortality in a primary culture of immature pig Leydig cells.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment.

Chronic exposure to glucocorticoids can lead to changes in hormone production, a characteristic "moon face" appearance and a "lemon with matchsticks" fat distribution (central obesity with wasting of limbs), susceptibility to infections, osteoporosis, cataracts, glaucoma, mental disturbance, high blood sugar and sugar in the urine. There may be muscular weakness and fatigue, acne, period disturbances in women and peptic ulcers. Growth retardation can occur in children and birth defects are possible. Corticosteroids appear in human milk and ' may stunt the growth of infants.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS

HAZARD RATINGS

Section 4 - FIRST AID MEASURES

SWALLOWED

VVALLOV

- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- Where Medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:
- For advice, contact a Poisons Information Center or a doctor.
- · Urgent hospital treatment is likely to be needed.
- · If conscious, give water to drink.
- INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

NOTE: Wear a protective glove when inducing vomiting by mechanical means.

- In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS.

EYE

- If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- · Continue flushing until advised to stop by the Poisons Information Center or a doctor, or for at least 15 minutes.
- · Transport to hospital or doctor without delay.
- · Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

- If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

.

- If fumes or combustion products are inhaled remove from contaminated area.
- · Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

NOTES TO PHYSICIAN

■ For spironolactone intoxication:

Hyperkalaemia may be treated by giving a diuretic which causes excretion of potassium, by injection of dextrose with insulin or by the use of the appropriate ion-exchange resin.

Treat symptomatically.

The adverse effects of corticosteroids are almost always due to their use in excess of physiological requirements. Symptomatic treatment is called for. Where possible the dose should be withdrawn or reduced. Acute renal insufficiency should be treated with intravenous hydrocortisone sodium succinate with infusions of 0.9% dextrose.MARTINDALE, The Extra Pharmacopoeia, 29th Ed. Patients or individuals exposed regularly in an occupational setting, should be evaluated periodically for evidence of HPA axis suppression. The evaluation may be performed by using the ACTH stimulation, A.M. plasma cortisol and urinary free cortisol tests. If HPA axis suppression is confirmed the individual should be removed from exposure. Recovery of the HPA axis function is generally prompt upon exposure cessation. Infrequently, signs and symptoms of glucocorticosteroid insufficiency may occur, requiring supplemental systemic corticosteroids.

Section 5 - FIRE FIGHTING MEASURES				
Vapour Pressure (mmHG):	Negligible			
Upper Explosive Limit (%):	Not Available			
Specific Gravity (water=1):	Not Available			
Lower Explosive Limit (%):	Not Available			

EXTINGUISHING MEDIA

ı

- Foam
- Dry chemical powder.
- BCF (where regulations permit).
- · Carbon dioxide.
- · Water spray or fog Large fires only.

FIRE FIGHTING

- · Alert Emergency Responders and tell them location and nature of hazard.
- · Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- · Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

.

- · Combustible solid which burns but propagates flame with difficulty.
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive
 mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the
 fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.
- Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport.
- Build-up of electrostatic charge may be prevented by bonding and grounding.
- Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes

FIRE INCOMPATIBILITY

■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses:

Chemical goggles.

Gloves:

Respirator:

Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- •
- Clean up waste regularly and abnormal spills immediately.
- · Avoid breathing dust and contact with skin and eyes.
- Wear protective clothing, gloves, safety glasses and dust respirator.
- Use dry clean up procedures and avoid generating dust.
- Vacuum up or sweep up. NOTE: Vacuum cleaner must be fitted with an exhaust micro filter (HEPA type) (consider explosion-proof machines designed to be grounded during storage and use).
- Dampen with water to prevent dusting before sweeping.
- Place in suitable containers for disposal.

MAJOR SPILLS

- Moderate hazard.
- CAUTION: Advise personnel in area.
- Alert Emergency Responders and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.

- Prevent, by any means available, spillage from entering drains or water courses.
- · Recover product wherever possible.
- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.
- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm)

AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure.

AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape.

AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

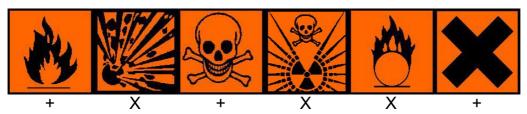
PROCEDURE I OR HANDLING

- Avoid all personal contact, including inhalation.
- · Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- · Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- · Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- · Keep containers securely sealed when not in use.
- · Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- · Work clothes should be laundered separately.
- · Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

- · Do NOT cut, drill, grind or weld such containers
- In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS


- Glass container.
- Polyethylene or polypropylene container.
- · Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

.

- Store in original containers.
- Keep containers securely sealed.
- · Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- · Observe manufacturer's storing and handling recommendations.

SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS

- X: Must not be stored together
- O: May be stored together with specific preventions
- +: May be stored together

EXPOSURE CONTROLS

The following materials had no OELs on our records

• canrenone: CAS:976-71-6

MATERIAL DATA

CANRENONE:

■ It is the goal of the ACGIH (and other Agencies) to recommend TLVs (or their equivalent) for all substances for which there is evidence of health effects at airborne concentrations encountered in the workplace.

At this time no TLV has been established, even though this material may produce adverse health effects (as evidenced in animal experiments or clinical experience). Airborne concentrations must be maintained as low as is practically possible and occupational exposure must be kept to a minimum.

NOTE: The ACGIH occupational exposure standard for Particles Not Otherwise Specified (P.N.O.S) does NOT apply.

Airborne particulate or vapor must be kept to levels as low as is practicably achievable given access to modern engineering controls and monitoring hardware. Biologically active compounds may produce idiosyncratic effects which are entirely unpredictable on the basis of literature searches and prior clinical experience (both recent and past).

PERSONAL PROTECTION

Consult your EHS staff for recommendations

EYE

■ When handling very small quantities of the material eye protection may not be required.

For laboratory, larger scale or bulk handling or where regular exposure in an occupational setting occurs:

- · Chemical goggles
- Face shield. Full face shield may be required for supplementary but never for primary protection of eyes
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]

HANDS/FEET

■ NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

- · frequency and duration of contact,
- · chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- Rubber gloves (nitrile or low-protein, powder-free latex). Employees allergic to latex gloves should use nitrile gloves in preference.
- Double gloving should be considered.
- PVC gloves.
- Protective shoe covers.
- Head covering.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene
- nitrile rubber
- butyl rubber
- fluorocaoutchouc
- polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

•

- For quantities up to 500 grams a laboratory coat may be suitable.
- For quantities up to 1 kilogram a disposable laboratory coat or coverall of low permeability is recommended. Coveralls should be buttoned at collar and cuffs.
- For quantities over 1 kilogram and manufacturing operations, wear disposable coverall of low permeability and disposable shoe covers.
- For manufacturing operations, air-supplied full body suits may be required for the provision of advanced respiratory protection.
- Eye wash unit.
- Ensure there is ready access to an emergency shower.

- For Emergencies: Vinyl suit
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

RESPIRATOR

Protection Factor Half-Face Respirator Full-Face Respirator Powered Air Respirator 10 x PEL PAPR-P1 Air-line* 50 x PEL Air-line** P2 PAPR-P2 100 x PEL P3 Air-line* 100+ x PEL Air-line* PAPR-P3

- Negative pressure demand ** - Continuous flow

Explanation of Respirator Codes:

Class 1 low to medium absorption capacity filters.

Class 2 medium absorption capacity filters.

Class 3 high absorption capacity filters.

PAPR Powered Air Purifying Respirator (positive pressure) cartridge.

Type A for use against certain organic gases and vapors.

Type AX for use against low boiling point organic compounds (less than 65°C).

Type B for use against certain inorganic gases and other acid gases and vapors.

Type E for use against sulfur dioxide and other acid gases and vapors.

Type K for use against ammonia and organic ammonia derivatives

Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. asbestos, silica

Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume.

Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium.

The local concentration of material, quantity and conditions of use determine the type of personal protective equipment

Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used.

ENGINEERING CONTROLS

■ Enclosed local exhaust ventilation is required at points of dust, fume or vapor generation.

HEPA terminated local exhaust ventilation should be considered at point of generation of dust, fumes or vapors.

Barrier protection or laminar flow cabinets should be considered for laboratory scale handling.

The need for respiratory protection should also be assessed where incidental or accidental exposure is anticipated: Dependent on levels of contamination, PAPR, full face air purifying devices with P2 or P3 filters or air supplied respirators should be

Fume-hoods and other open-face containment devices are acceptable when face velocities of at least 1 m/s (200 feet/minute) are achieved. Partitions, barriers, and other partial containment technologies are required to prevent migration of the material to uncontrolled areas. For non-routine emergencies maximum local and general exhaust are necessary. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

\	Type of Contaminant:	Air Speed:
	solvent, vapors, etc. evaporating from tank (in still air)	0.25-0.5 m/s (50-100 f/min.)
	aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
	direct spray, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) Within each range the appropriate value depends on:	1-2.5 m/s (200-500 f/min.)
	Lower end of the range	Upper end of the range
	1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
	2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
	3: Intermittent, low production.	3: High production, heavy use
	4: Large hood or large air mass in motion	4: Small hood-local control only
	Simple theory shows that air velocity falls rapidly with distan	ace away from the opening of a simple extraction pipe. Velocity

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2.5 m/s (200-500 f/min.) for extraction of gases discharged 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

State	Divided Solid	Molecular Weight	340.46
Melting Range (°F)	300.2- 303.8	Viscosity	Not Applicable
Boiling Range (°F)	Not Applicable	Solubility in water (g/L)	Not Applicable
Flash Point (°F)	Not Available	pH (1% solution)	Not Applicable
Decomposition Temp (°F)	Not Available	pH (as supplied)	Not Applicable
Autoignition Temp (°F)	Not Available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not Available	Specific Gravity (water=1)	Not Available
Lower Explosive Limit (%)	Not Available	Relative Vapor Density (air=1)	Not Applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not Applicable

APPEARANCE

White to light-brown crystalline solid; does not mix well with water. Solidifies and remelts at 165 C.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- · Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerization will not occur.

STORAGE INCOMPATIBILITY

- Avoid strong bases.
- Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

canrenone

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances.

TOXICITY IRRITATION

Oral (Rat) LD50: >5000 mg/kg *

Ames test: negative

* Council of Europe Safety Data Sheet

Section 12 - ECOLOGICAL INFORMATION

Refer to data for ingredients, which follows:

CANRENONE:

- Toxic to aquatic organisms.
- Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

■ DO NOT discharge into sewer or waterways.

Daphnia EC50 (48 h): 3.7-7.6

Bioaccumulates

Ecotoxicity

Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility canrenone HIGH LOW LOW

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Puncture containers to prevent re-use and bury at an authorized landfill.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

- · Recycle wherever possible.
- Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material)
- · Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

No data for canrenone (CAS: , 976-71-6)

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Skin contact may produce health damage*.
- Cumulative effects may result following exposure*.
- Limited evidence of a carcinogenic effect*.
- Eye contact may produce serious damage*.
- Possible skin sensitizer*.
- May possibly affect fertility*.
- May possibly be harmful to the fetus/ embryo*.
- * (limited evidence).

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

- Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

 A list of reference resources used to assist the committee may be found at:

 www.chemwatch.net/references.
- The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Oct-23-2009 Print Date:Apr-21-2010