Ubiquinone-5 ## sc-205876 **Material Safety Data Sheet** The Power to Question Hazard Alert Code Key: **EXTREME** HIGH **MODERATE** LOW ## Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION ## **PRODUCT NAME** Ubiquinone-5 #### STATEMENT OF HAZARDOUS NATURE Not considered a hazardous substance according to OSHA 29 CFR 1910.1200. #### **SUPPLIER** Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 #### **PRODUCT USE** ■ The ubiquinones (coenzyme Qs) are a family of anti-oxidants which occur in many organisms. They have been described as antioxidant vitamins. This description does not take into account that the organism may synthesize ubiquinones whilst vitamins are made available only from external sources. The ubiquinone (ubiquitous quinone) family comprises a group of lipid soluble benzoquinones involved in electron transport in mitochondrial systems i.e. in the oxidation of succinate or reduced nicotine adenine dinucleotide (NADH) via the cytochrome system. They occur in the majority of aerobic organisms including bacteria and mammals. The ubiquinones are structurally analogous to Vitamin K2 and are based on the 2,3-dimethoxy-5-methylbenzoquinone nucleus with variable terpenoid side-chains containing one - twelve mono-unsaturated trans-isoprenoid units. The existing nomenclature describes coenzyme (Co)Qs in which "n" = 1-12 (transterpenoid units), or Ubiquinone(x) in which "x" designates the total number of carbon atoms in the side chain and can be any multiple of 5. Coenzymes Q6 through Q10 are the most common forms of coenzymes and occur widely. CoQ10 is found only in mammals. Studies have shown that while other CoQ "homologues" are found in human tissue, only CoQ10 is functional. The homologues are in such trace amounts as to be functionally insignificant. The importance of CoQ10 in humans, is illustrated by the fact that the heart may cease to function if the level of CoQ10 falls by 75%. CoQ10 has been used as a cardiovascular agent where it is thought by some to be involved in the metabolism of cardiac muscle. High doses have been protective, in animals, against isoprenaline-induced myocardial damage. CoQ10 has also been used, in conjunction with standard treatments, in mild or moderate congestive heart failure. CoQ10 therapy has also been proposed in thyrotoxic heart failure, symptomatic mitral valve prolapse in children, cardiomyopathy and cardiotoxicity induced by adriamycin (an anti-cancer drug), in immunodefici #### **SYNONYMS** C14-H18-O4, ubiquinone-5, "2, 3-dimethoxy-5-methyl-6-(3-methyl-2-butenyl)-1, 4-", "2, 3-dimethoxy-5-methyl-6-(3-methyl-2-butenyl)-1, 4-", benzoquinone, "antioxidant vitamin" ## **Section 2 - HAZARDS IDENTIFICATION** ## **CANADIAN WHMIS SYMBOLS** None #### **EMERGENCY OVERVIEW** #### **RISK** ## POTENTIAL HEALTH EFFECTS #### **ACUTE HEALTH EFFECTS** #### **SWALLOWED** - Although ingestion is not thought to produce harmful effects, the material may still be damaging to the health of the individual following ingestion, especially where pre-existing organ (e.g. liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality (death) rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern. - Toxicity studies with ubiquinones in animals have not shown any adverse side-effects, even at dosages many times higher than those used in clinical studies. No serious side-effects have been reported with long-term clinical use of the ubiquinone, coenzyme Q10 (CoQ10). In one study of 5143 patients treated with 30 mg of CoQ10 per day, the incidence of side-effects reported were epigastric discomfort (0.39%), loss of appetite (0.23%), nausea (0.16%) and diarrhoea (0.12%). There is also no evidence for foetal abnormalities, or distress to the mother during pregnancy or soon after birth. #### EYE ■ Although the material is not thought to be an irritant, direct contact with the eye may cause transient discomfort characterized by tearing or conjunctival redness (as with windburn). Slight abrasive damage may also result. The material may produce foreign body irritation in certain individuals. #### SKIN - The material is not thought to produce adverse health effects or skin irritation following contact (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. - Open cuts, abraded or irritated skin should not be exposed to this material. - Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. #### **INHALED** - The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. - Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. #### **CHRONIC HEALTH EFFECTS** ■ Long-term exposure to the product is not thought to produce chronic effects adverse to the health (as classified using animal models); nevertheless exposure by all routes should be minimized as a matter of course. Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung. Prime symptom is breathlessness; lung shadows show on X-ray. ## **Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS** #### **HAZARD RATINGS** | | Min | Max | |---|-------|---| | 1 | | | | 0 | | | | 0 | | Min/Nil=0 | | 1 | | Low=1
Moderate=2 | | 0 | | High=3
Extreme=4 | | | 0 0 1 | 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | NAME CAS RN % coenzyme Q1 727-81-1 >98 ## **Section 4 - FIRST AID MEASURES** #### **SWALLOWED** - -- - Immediately give a glass of water. - First aid is not generally required. If in doubt, contact a Poisons Information Center or a doctor. #### EYE - If this product comes in contact with eyes: - Wash out immediately with water. - If irritation continues, seek medical attention. - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. ## SKIN - If skin or hair contact occurs: - Flush skin and hair with running water (and soap if available). - Seek medical attention in event of irritation. #### **INHALED** _ - If dust is inhaled, remove from contaminated area. - Encourage patient to blow nose to ensure clear passage of breathing. If irritation or discomfort persists seek medical attention. #### **NOTES TO PHYSICIAN** ■ Treat symptomatically. | Section 5 - FIRE FIGHTING MEASURES | | | |------------------------------------|----------------|--| | Vapour Pressure (mmHG): | Negligible | | | Upper Explosive Limit (%): | Not available. | | | Specific Gravity (water=1): | Not available | | | Lower Explosive Limit (%): | Not available | | #### **EXTINGUISHING MEDIA** - Foam. - · Dry chemical powder. - · BCF (where regulations permit). - · Carbon dioxide. - · Water spray or fog Large fires only. #### **FIRE FIGHTING** - · Alert Emergency Responders and tell them location and nature of hazard. - · Wear breathing apparatus plus protective gloves. - · Prevent, by any means available, spillage from entering drains or water course. - Use water delivered as a fine spray to control fire and cool adjacent area. - DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - · Equipment should be thoroughly decontaminated after use. #### GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS - · Combustible solid which burns but propagates flame with difficulty. - Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited. - Dry dust can be charged electrostatically by turbulence, pneumatic transport, pouring, in exhaust ducts and during transport. - Build-up of electrostatic charge may be prevented by bonding and grounding. - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), other pyrolysis products typical of burning organic material. #### FIRE INCOMPATIBILITY ■ Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids,chlorine bleaches, pool chlorine etc. as ignition may result ## **PERSONAL PROTECTION** Glasses: Chemical goggles. Gloves: Respirator: Particulate ## **Section 6 - ACCIDENTAL RELEASE MEASURES** #### MINOR SPILLS - Clean up all spills immediately. - Avoid contact with skin and eyes. - Wear impervious gloves and safety glasses. - Use dry clean up procedures and avoid generating dust. - Sweep up or vacuum up (consider explosion-proof machines designed to be grounded during storage and use). - Place spilled material in clean, dry, sealable, labeled container. #### MAJOR SPILLS - Clear area of personnel and move upwind. - Alert Emergency Responders and tell them location and nature of hazard. - Control personal contact by using protective equipment and dust respirator. - Prevent spillage from entering drains, sewers or water courses. - Avoid generating dust. - Sweep, shovel up. - Recover product wherever possible. - Put residues in labeled plastic bags or other containers for disposal. - · If contamination of drains or waterways occurs, advise emergency services. #### ACUTE EXPOSURE GUIDELINE LEVELS (AEGL) (in ppm) AEGL 1: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience notable discomfort, irritation, or certain asymptomatic nonsensory effects. However, the effects are not disabling and are transient and reversible upon cessation of exposure. AEGL 2: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience irreversible or other serious, long-lasting adverse health effects or an impaired ability to escape. AEGL 3: The airborne concentration of a substance above which it is predicted that the general population, including susceptible individuals, could experience life-threatening health effects or death. ## **Section 7 - HANDLING AND STORAGE** #### PROCEDURE FOR HANDLING - Limit all unnecessary personal contact. - Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - · Keep containers securely sealed when not in use. - Avoid physical damage to containers. - · Always wash hands with soap and water after handling. - · Work clothes should be laundered separately. - Use good occupational work practice. - · Observe manufacturer's storing and handling recommendations. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source. - Do NOT cut, drill, grind or weld such containers - In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit. #### RECOMMENDED STORAGE METHODS . - · Lined metal can, Lined metal pail/drum - Plastic pail - Polyliner drum - · Packing as recommended by manufacturer. - Check all containers are clearly labeled and free from leaks. #### STORAGE REQUIREMENTS - • - Store in original containers.Keep containers securely sealed. - Store in a cool, dry, well-ventilated area. - Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - Observe manufacturer's storing and handling recommendations. #### SAFE STORAGE WITH OTHER CLASSIFIED CHEMICALS - X: Must not be stored together - O: May be stored together with specific preventions - +: May be stored together ## **Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION** #### **EXPOSURE CONTROLS** | Source | Material | TWA
ppm | TWA
mg/m³ | STEL ppm | STEL
mg/m³ | Peak
ppm | Peak
mg/m³ | TWA
F/CC | Notes | |--|--|------------|--------------|----------|---------------|-------------|---------------|-------------|-------| | US - Oregon Permissible Exposure Limits (Z3) | coenzyme Q1 (Inert or Nuisance
Dust: (d) Total dust) | | 10 | | | | | | * | | US OSHA Permissible Exposure
Levels (PELs) - Table Z3 | coenzyme Q1 (Inert or Nuisance
Dust: (d) Respirable fraction) | | 5 | | | | | | | | US OSHA Permissible Exposure
Levels (PELs) - Table Z3 | coenzyme Q1 (Inert or Nuisance
Dust: (d) Total dust) | 15 | |--|--|-----| | US - Hawaii Air Contaminant
Limits | coenzyme Q1 (Particulates not
other wise regulated - Total
dust) | 10 | | US - Hawaii Air Contaminant
Limits | coenzyme Q1 (Particulates not other wise regulated - Respirable fraction) | 5 | | US - Oregon Permissible
Exposure Limits (Z3) | coenzyme Q1 (Inert or Nuisance
Dust: (d) Respirable fraction) | 5 * | | US - Tennessee Occupational
Exposure Limits - Limits For Air
Contaminants | coenzyme Q1 (Particulates not otherwise regulated Respirable fraction) | 5 | | US - Wyoming Toxic and
Hazardous Substances Table Z1
Limits for Air Contaminants | coenzyme Q1 (Particulates not otherwise regulated (PNOR)(f)-Respirable fraction) | 5 | | US - Michigan Exposure Limits for
Air Contaminants | . coenzyme Q1 (Particulates not otherwise regulated, Respirable dust) | 5 | #### **MATERIAL DATA** COENZYME Q1: - These "dusts" have little adverse effect on the lungs and do not produce toxic effects or organic disease. Although there is no dust which does not evoke some cellular response at sufficiently high concentrations, the cellular response caused by P.N.O.C.s has the following characteristics: - the architecture of the air spaces remain intact, - scar tissue (collagen) is not synthesised to any degree, - · tissue reaction is potentially reversible. Extensive concentrations of P.N.O.C.s may: - · seriously reduce visibility, - · cause unpleasant deposits in the eyes, ears and nasal passages, - contribute to skin or mucous membrane injury by chemical or mechanical action, per se, or by the rigorous skin cleansing procedures necessary for their removal. [ACGIH] This limit does not apply: - to brief exposures to higher concentrations - nor does it apply to those substances that may cause physiological impairment at lower concentrations but for which a TLV has as yet to be determined. This exposure standard applies to particles which - are insoluble or poorly soluble* in water or, preferably, in aqueous lung fluid (if data is available) and - have a low toxicity (i.e.. are not cytotoxic, genotoxic, or otherwise chemically reactive with lung tissue, and do not emit ionizing radiation, cause immune sensitization, or cause toxic effects other than by inflammation or by a mechanism of lung overload) ## PERSONAL PROTECTION Consult your EHS staff for recommendations ## **EYE** - Safety glasses with side shields - Chemical goggles. - · Contact lenses pose a special hazard; soft lenses may absorb irritants and all lenses concentrate them. #### HANDS/FEET - Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as: - frequency and duration of contact, - · chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended. - When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended. - Contaminated gloves should be replaced. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present. - polychloroprene - nitrile rubber - butyl rubber - fluorocaoutchouc - polyvinyl chloride Gloves should be examined for wear and/ or degradation constantly. ■ No special equipment needed when handling small quantities. OTHERWISE: - Overalls. - Barrier cream. - Eyewash unit. - Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures. - The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option). - Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory These may be government mandated or vendor recommended. - Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program. - Use approved positive flow mask if significant quantities of dust becomes airborne. - Try to avoid creating dust conditions. #### RESPIRATOR | Protection Factor | Half-Face Respirator | Full-Face Respirator | Powered Air Respirator | |-------------------|----------------------|----------------------|------------------------| | 10 x PEL | P1 | - | PAPR-P1 | | | Air-line* | - | - | | 50 x PEL | Air-line** | P2 | PAPR-P2 | | 100 x PEL | - | P3 | - | | | | Air-line* | - | | 100+ x PEL | - | Air-line** | PAPR-P3 | ^{* -} Negative pressure demand ** - Continuous flow Explanation of Respirator Codes: Class 1 low to medium absorption capacity filters. Class 2 medium absorption capacity filters. Class 3 high absorption capacity filters. PAPR Powered Air Purifying Respirator (positive pressure) cartridge. Type A for use against certain organic gases and vapors. Type AX for use against low boiling point organic compounds (less than 65°C). Type B for use against certain inorganic gases and other acid gases and vapors. Type E for use against sulfur dioxide and other acid gases and vapors. Type K for use against ammonia and organic ammonia derivatives Class P1 intended for use against mechanically generated particulates of sizes most commonly encountered in industry, e.g. Class P2 intended for use against both mechanically and thermally generated particulates, e.g. metal fume. Class P3 intended for use against all particulates containing highly toxic materials, e.g. beryllium. The local concentration of material, quantity and conditions of use determine the type of personal protective equipment required Use appropriate NIOSH-certified respirator based on informed professional judgement. In conditions where no reasonable estimate of exposure can be made, assume the exposure is in a concentration IDLH and use NIOSH-certified full face pressure demand SCBA with a minimum service life of 30 minutes, or a combination full facepiece pressure demand SAR with auxiliary self-contained air supply. Respirators provided only for escape from IDLH atmospheres shall be NIOSH-certified for escape from the atmosphere in which they will be used. #### **ENGINEERING CONTROLS** - Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction. - Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace. - If in spite of local exhaust an adverse concentration of the substance in air could occur, respiratory protection should be considered. Such protection might consist of: - (a): particle dust respirators, if necessary, combined with an absorption cartridge; - (b): filter respirators with absorption cartridge or canister of the right type; - (c): fresh-air hoods or masks - Build-up of electrostatic charge on the dust particle, may be prevented by bonding and grounding. - Powder handling equipment such as dust collectors, dryers and mills may require additional protection measures such as explosion venting. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to efficiently remove the contaminant. | Type of Contaminant: | Air Speed: | |--|----------------------------------| | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s (500-2000 f/min.) | | Within each range the appropriate value depends on: | | | Lower end of the range | Upper end of the range | | 1: Room air currents minimal or favorable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only | 2: Contaminants of high toxicity | 3: Intermittent, low production. - 3: High production, heavy use - 4: Large hood or large air mass in motion - 4: Small hood-local control only Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ## **Section 9 - PHYSICAL AND CHEMICAL PROPERTIES** #### PHYSICAL PROPERTIES Solid. Does not mix with water. | 2000 1101 11111 1141011 | | | | |---------------------------|----------------|--------------------------------|-----------------| | State | Divided solid | Molecular Weight | 250.3 | | Melting Range (°F) | Not available | Viscosity | Not Applicable | | Boiling Range (°F) | Not available | Solubility in water (g/L) | Partly miscible | | Flash Point (°F) | Not available | pH (1% solution) | Not applicable | | Decomposition Temp (°F) | Not available. | pH (as supplied) | Not applicable | | Autoignition Temp (°F) | Not available | Vapour Pressure (mmHG) | Negligible | | Upper Explosive Limit (%) | Not available. | Specific Gravity (water=1) | Not available | | Lower Explosive Limit (%) | Not available | Relative Vapor Density (air=1) | Not Applicable | | Volatile Component (%vol) | Negligible | Evaporation Rate | Not applicable | | | | | | #### **APPEARANCE** Powder; does not mix well with water. ## **Section 10 - CHEMICAL STABILITY** #### CONDITIONS CONTRIBUTING TO INSTABILITY ■ Product is considered stable and hazardous polymerization will not occur. #### STORAGE INCOMPATIBILITY Avoid contamination of water, foodstuffs, feed or seed. Avoid reaction with oxidizing agents. For incompatible materials - refer to Section 7 - Handling and Storage. ### **Section 11 - TOXICOLOGICAL INFORMATION** coenzyme Q1 ### **TOXICITY AND IRRITATION** unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances. TOXICITY IRRITATION Oral (rat) LD50: >4000 mg/kg Nil Reported Subcutaneous (rat) LD50: >500 mg/kg Intravenous (rat) LD50: >250 mg/kg Intramuscular (rat) LD50: >500 mg/kg Oral (mouse) LD50: >4000 mg/kg Subcutaneous (mouse) LD50: >500 mg/kg Intravenous (mouse) LD50: >500 mg/kg Intramuscular (mouse) LD50: >500 mg/kg Foetotoxicity, specific developmental abnormalities (musculoskeletal system), effects on newborn, foetolethality, altered sleep time, diarrhoea, tumourigenic effects recorded. ## **Section 12 - ECOLOGICAL INFORMATION** Refer to data for ingredients, which follows: COENZYME Q1: ■ Substances containing unsaturated carbons are ubiquitous in indoor environments. They result from many sources (see below). Most are reactive with environmental ozone and many produce stable products which are thought to adversely affect human health. The potential for surfaces in an enclosed space to facilitate reactions should be considered. Source of unsaturated substances Unsaturated substances (Reactive Emissions) Major Stable Products produced following reaction with ozone. | Occupants (exhaled breath, ski oils, personal care products) | Isoprene, nitric oxide, squalene,
unsaturated sterols, oleic acid and other
unsaturated fatty acids, unsaturated
oxidation products | nitrogen dioxide, acetone, 6MHQ, geranyl acetone, 4OPA, formaldehyde, nonanol, decanal, 9-oxo-nonanoic acid, azelaic acid, nonanoic acid. | | | | |---|---|---|--|--|--| | Soft woods, wood flooring, including cypress, cedar and silver fir boards, houseplants | Isoprene, limonene, alpha-pinene, other terpenes and sesquiterpenes | Formaldehyde, 4-AMC, pinoaldehyde, pinic acid, pinonic acid, formic acid, methacrolein, methyl vinyl ketone, SOAs including ultrafine particles | | | | | Carpets and carpet backing | 4-Phenylcyclohexene, 4-
vinylcyclohexene, styrene, 2-ethylhexyl
acrylate, unsaturated fatty acids and
esters | Formaldehyde, acetaldehyde,
benzaldehyde, hexanal, nonanal, 2-
nonenal | | | | | Linoleum and paints/polishes containing linseed oil | Linoleic acid, linolenic acid | Propanal, hexanal, nonanal, 2-heptenal, 2-nonenal, 2-decenal, 1-pentene-3-one, propionic acid, n-butyric acid | | | | | Latex paint | Residual monomers | Formaldehyde | | | | | Certain cleaning products, polishes, waxes, air fresheners | Limonene, alpha-pinene, terpinolene,
alpha-terpineol, linalool, linalyl acetate
and other terpenoids, longifolene and
other sesquiterpenes | Formaldehyde, acetaldehyde, glycoaldehyde, formic acid, acetic acid, hydrogen and organic peroxides, acetone, benzaldehyde, 4-hydroxy-4-methyl-5-hexen-1-al, 5-ethenyl-dihydro-5-methyl-2(3H)-furanone, 4-AMC, SOAs including ultrafine particles | | | | | Natural rubber adhesive | Isoprene, terpenes | Formaldehyde, methacrolein, methyl vinyl ketone | | | | | Photocopier toner, printed paper, styrene polymers | Styrene | Formaldehyde, benzaldehyde | | | | | Environmental tobacco smoke | Styrene, acrolein, nicotine | Formaldehyde, benzaldehyde, hexanal, glyoxal, N-methylformamide, nicotinaldehyde, cotinine | | | | | Soiled clothing, fabrics, bedding | Squalene, unsaturated sterols, oleic acid and other saturated fatty acids | Acetone, geranyl acetone, 6MHO, 40PA, formaldehyde, nonanal, decanal, 9-oxononanoic acid, azelaic acid, nonanoic acid | | | | | Soiled particle filters | Unsaturated fatty acids from plant waxes, leaf litter, and other vegetative debris; soot; diesel particles | Formaldehyde, nonanal, and other aldehydes; azelaic acid; nonanoic acid; 9-oxo-nonanoic acid and other oxo-acids; compounds with mixed functional groups (=O, -OH, and -COOH) | | | | | Ventilation ducts and duct liners | Unsaturated fatty acids and esters, unsaturated oils, neoprene | C5 to C10 aldehydes | | | | | "Urban grime" | Polycyclic aromatic hydrocarbons | Oxidized polycyclic aromatic hydrocarbons | | | | | Perfumes, colognes, essential oils (e.g. lavender, eucalyptus, tea tree) | Limonene, alpha-pinene, linalool, linalyl acetate, terpinene-4-ol, gamma-terpinene | Formaldehyde, 4-AMC, acetone, 4-hydroxy-4-methyl-5-hexen-1-al, 5-e ethenyl-dihydro-5-methyl-2(3H) furanone, SOAs including ultrafine particles | | | | | Overall home emissions | Limonene, alpha-pinene, styrene | Formaldehyde, 4-AMC, pinonaldehyde, acetone, pinic acid, pinonic acid, formic acid, benzaldehyde, SOAs including ultrafine particles | | | | | Abbreviations: 4-AMC, 4-acetyl-1-methylcyclohexene; 6MHQ, 6-methyl-5-heptene-2-one, 4OPA, 4-oxopentanal, SOA, | | | | | | Abbreviations: 4-AMC, 4-acetyl-1-methylcyclohexene; 6MHQ, 6-methyl-5-heptene-2-one, 4OPA, 4-oxopentanal, SOA, Secondary Organic Aerosols Reference: Charles J Weschler; Environmental Helath Perspectives, Vol 114, October 2006. ## **Ecotoxicity** Ingredient Persistence: Water/Soil Persistence: Air Bioaccumulation Mobility coenzyme Q1 HIGH LOW HIGH ## **Section 13 - DISPOSAL CONSIDERATIONS** #### **Disposal Instructions** All waste must be handled in accordance with local, state and federal regulations. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - Reuse - Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal. - Recycle wherever possible. - Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: Burial in a licensed land-fill or Incineration in a licensed apparatus (after admixture with suitable combustible material) - · Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. ## **Section 14 - TRANSPORTATION INFORMATION** NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG ## **Section 15 - REGULATORY INFORMATION** coenzyme Q1 (CAS: 727-81-1) is found on the following regulatory lists; "US - Hawaii Air Contaminant Limits", "US - Oregon Permissible Exposure Limits (Z3)", "US OSHA Permissible Exposure Levels (PELs) - Table Z3" ## **Section 16 - OTHER INFORMATION** Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL. - Classification of the mixture and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references. - The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. Issue Date: Nov-5-2009 Print Date: Apr-21-2010