Sodium octyl sulfate

Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME

Sodium octyl sulfate

STATEMENT OF HAZARDOUS NATURE

CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200.

SUPPLIER

Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800 **EMERGENCY:** ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112

SYNONYMS

C8-H18-O4-S, CH3(CH2)7OSO3.Na, "sulfuric acid, monooctyl ester, sodium salt", "sulphuric acid, monooctyl ester, sodium salt", "sodium capryl sulfate", "sodium capryl sulfate", "sodium octylsulfate", "Cycloryl OS", "DuPonol 80", "Sipex OLS", SOS, "anionic surfactant"

EMERGENCY OVERVIEW

RISK

Irritating to eyes, respiratory system and skin. Toxic to aquatic organisms.

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

- Accidental ingestion of the material may be damaging to the health of the individual.
- Ingestion of anionic surfactants may produce diarrhea, bloated stomach, and occasional vomiting.
- Organo-sulfates are generally poorly absorbed from the gastrointestinal tract but have the ability to attract water and as a result may produce diarrhea. If absorbed they are highly toxic.

<\p>.

EYE

- This material can cause eye irritation and damage in some persons.
- If applied to the eyes, this material causes severe eye damage.

Direct eye contact with some anionic surfactants in high concentration can cause severe damage to the cornea. Low concentrations can cause discomfort, excess blood flow, and corneal clouding and swelling. <\p>.

SKIN

- This material can cause inflammation of the skin oncontact in some persons.
- The material may accentuate any pre-existing dermatitis condition.
- Skin contact is not thought to have harmful health effects, however the material may still produce health damage following entry through wounds. lesions or abrasions.
- Repeated exposure may cause skin cracking, flaking or drying following normal handling and use.
- Anionic surfactants can cause skin redness and pain, as well as a rash. Cracking, scaling and blistering can occur.
- Open cuts, abraded or irritated skin should not be exposed to this material.

Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

INHALED

- The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.
- Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

CHRONIC HEALTH EFFECTS

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

There is some evidence that inhaling this product is more likely to cause a sensitization reaction in some persons compared to the general population.

There is limited evidence that, skin contact with this product is more likely to cause a sensitization reaction in some persons compared to the general population.

Long term exposure to high dust concentrations may cause changes in lung function i.e. pneumoconiosis; caused by particles less than 0.5 micron penetrating and remaining in the lung.

<\p>.

Prolonged or repeated skin contact may cause degreasing with drying, cracking and dermatitis following.

Repeated skin contact with some sulfonated surfactants has produced sensitization dermatitis in predisposed individuals. Alkyl-substituted sulfonates are thought to induce genetic mutations in cells.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS			
NAME	CAS RN	%	
sodium octyl sulfate	142-31-4	100	

Section 4 - FIRST AID MEASURES

SWALLOWED

· If swallowed do NOT induce vomiting. · If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.

EYE

■ If this product comes in contact with the eyes: · Immediately hold eyelids apart and flush the eye continuously with running water. · Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.

SKIN

JAIN - If alim

■ If skin contact occurs: · Immediately remove all contaminated clothing, including footwear · Flush skin and hair with running water (and soap if available).

INHALED

· If fumes or combustion products are inhaled remove from contaminated area. · Lay patient down. Keep warm and rested.

NOTES TO PHYSICIAN

Treat symptomatically.

Section 5 - FIRE FIGHTING MEASURES

Vapour Pressure (mmHG):	Negligible
Upper Explosive Limit (%):	Not available
Specific Gravity (water=1):	Not available
Lower Explosive Limit (%):	Not available

EXTINGUISHING MEDIA

· Water spray or fog.

· Foam.

FIRE FIGHTING

· Alert Emergency Responders and tell them location and nature of hazard.

Wear breathing apparatus plus protective gloves.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

 \cdot Combustible solid which burns but propagates flame with difficulty.

Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust may burn rapidly and fiercely if ignited.

Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), sulfur oxides (SOx), other pyrolysis products typical of burning organic material.

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

Avoid contamination with oxidizing agents i.e. nitrates, oxidizing acids, chlorine bleaches, pool chlorine etc. as ignition may result.

PERSONAL PROTECTION

Glasses: Chemical goggles. Gloves: Respirator: Particulate

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- · Remove all ignition sources.
- · Clean up all spills immediately.
- · Avoid contact with skin and eyes.
- · Control personal contact by using protective equipment.
- · Use dry clean up procedures and avoid generating dust.
- · Place in a suitable, labelled container for waste disposal.
- MAJOR SPILLS
- Moderate hazard.
- · CAUTION: Advise personnel in area.
- · Alert Emergency Responders and tell them location and nature of hazard.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- · Avoid all personal contact, including inhalation.
- \cdot Wear protective clothing when risk of exposure occurs.

Empty containers may contain residual dust which has the potential to accumulate following settling. Such dusts may explode in the presence of an appropriate ignition source.

· Do NOT cut, drill, grind or weld such containers.

· In addition ensure such activity is not performed near full, partially empty or empty containers without appropriate workplace safety authorisation or permit.

RECOMMENDED STORAGE METHODS

· Polyethylene or polypropylene container.

· Check all containers are clearly labelled and free from leaks.

STORAGE REQUIREMENTS

· Store in original containers.

· Keep containers securely sealed.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

Source	Material	TWA mg/m ³	Notes
US - Oregon Permissible Exposure Limits (Z-3)	sodium octyl sulfate (Inert or Nuisance Dust: Total dust)	10	(d)
US OSHA Permissible Exposure Levels (PELs) - Table Z3	sodium octyl sulfate (Inert or Nuisance Dust: (d) Respirable fraction)	5	
US OSHA Permissible Exposure Levels (PELs) - Table Z3	sodium octyl sulfate (Inert or Nuisance Dust: (d) Total dust)	15	
US - Hawaii Air Contaminant Limits	sodium octyl sulfate (Particulates not other wise regulated - Total dust)	10	
US - Hawaii Air Contaminant Limits	sodium octyl sulfate (Particulates not other wise regulated - Respirable fraction)	5	
US - Oregon Permissible Exposure Limits (Z-3)	sodium octyl sulfate (Inert or Nuisance Dust: Respirable fraction)	5	(d)
US ACGIH Threshold Limit Values (TLV)	sodium octyl sulfate (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)	10	See Appendix B current TLV/BEI Book
US - California Permissible Exposure Limits for Chemical Contaminants	sodium octyl sulfate (Particulates not otherwise regulated Respirable fraction)	5	(n)
US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants	sodium octyl sulfate (Particulates not otherwise regulated Respirable fraction)	5	
US - Michigan Exposure Limits for Air Contaminants	sodium octyl sulfate (Particulates not otherwise regulated, Respirable dust)	5	
Canada - Prince Edward Island Occupational Exposure Limits	sodium octyl sulfate (Particles (Insoluble or Poorly Soluble) [NOS] Inhalable particles)	10	See Appendix B current TLV/BEI Book
US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants	sodium octyl sulfate (Particulates not otherwise regulated (PNOR)(f)- Respirable fraction)	5	

ENDOELTABLE

PERSONAL PROTECTION

RESPIRATOR Particulate

Consult your EHS staff for recommendations **EYE**

 \cdot Safety glasses with side shields.

· Chemical goggles.

HANDS/FEET

■ NOTE: The material may produce skin sensitization in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: such as:

frequency and duration of contact,

 \cdot chemical resistance of glove material,

· glove thickness and

· dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739).

• When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374) is recommended.

· When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374) is recommended.

· Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- · polychloroprene
- nitrile rubber
- · butyl rubber
- · fluorocaoutchouc
- · polyvinyl chloride

Gloves should be examined for wear and/ or degradation constantly.

OTHER

- · Overalls.
- · P.V.C. apron.
- · Barrier cream.
- · Skin cleansing cream.
- · Eye wash unit.

ENGINEERING CONTROLS

· Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.

· Exhaust ventilation should be designed to prevent accumulation and recirculation of particulates in the workplace.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Solid. Mixes with water.			
State	Divided solid	Molecular Weight	232.3
Melting Range (°F)	383 (decomp)	Viscosity	Not Applicable
Boiling Range (°F)	Not available	Solubility in water (g/L)	Miscible
Flash Point (°F)	Not available	pH (1% solution)	Not available
Decomposition Temp (°F)	383	pH (as supplied)	Not applicable
Autoignition Temp (°F)	Not available	Vapour Pressure (mmHG)	Negligible
Upper Explosive Limit (%)	Not available	Specific Gravity (water=1)	Not available
Lower Explosive Limit (%)	Not available	Relative Vapor Density (air=1)	Not Applicable
Volatile Component (%vol)	Negligible	Evaporation Rate	Not applicable

APPEARANCE

White powder; mixes with water.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- \cdot Presence of incompatible materials.
- \cdot Product is considered stable.

STORAGE INCOMPATIBILITY

Avoid reaction with oxidizing agents.

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

SODIUM OCTYL SULFATE

TOXICITY AND IRRITATION

SODIUM OCTYL SULFATE:

unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances. TOXICITY

Oral (rat) LD50: 3200 mg/kg	Nil Reported

Intraperitoneal (mouse) LD50: 396 mg/kg

• Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Alkyl sulfates (AS) anionic surfactants are generally classified according to Comité Européen des Agents de Surface et leurs Intermédiaires Organiques (CESIO) as Irritant (Xi) with the risk phrases R38 (Irritating to skin) and R41 (Risk of serious damage to eyes). An exception has been made for C12 AS which is classified as Harmful (Xn) with the risk phrases R22 (Harmful if swallowed) and R38 and R41 (CESIO 2000). AS are not included in Annex 1 of list of dangerous substances of Council Directive 67/548/EEC.

AS are readily absorbed from the gastrointestinal tract after oral administration. Penetration of AS through intact skin appears to be minimal. AS are extensively metabolized in various species resulting in the formation of several metabolites. The primary metabolite is butyric acid-4-sulfate. The major site of metabolism is the liver. AS and their metabolites are primarily eliminated via the urine and only minor amounts are eliminated via the faeces. In rats about 70-90% of the dose was eliminated via the urine within 48 hours after oral, intravenous or intraperitoneal administration of 1 mg of AS per rat. The acute toxicity of AS in animals is considered to be low after skin contact or oral intake.

For a homologous series of AS (C8 to C16), maximum swelling of stratum corneum (the outermost layer of epidermis) of the skin was produced by the C12 homologue. This is in accordance with the fact that the length of the hydrophobic alkyl chain influences the skin irritation potential. Other studies have shown that especially AS of chain lengths C11, C12 and C13 remove most amino acids and soluble proteins from the skin during washing.

Concentrated samples of AS are skin irritants in rabbits and guinea pigs. AS are non-irritant to laboratory animals at a 0.1% concentration. C12 AS is used in research laboratories as a standard substance to irritate skin and has been shown to induce an irritant eczema. AS were found, by many authors, to be the most irritating of the anionic surfactants, although others have judged the alkyl sulfates only as irritant as laurate (fatty acid soap).

A structure/effect relationship with regard to the length of the alkyl chain can also be observed on mucous membranes. The maximum eye irritation occurs at chain lengths of C10 to C14 . In acute ocular tests, 10% C12 AS caused corneal damage to the rabbit eyes if not irrigated. Another study showed that a 1.0% aqueous C12 AS solution only had a slight effect on rabbit eyes, whereas 5% C12 AS caused temporary conjunctivitis, and 25% C12 AS resulted in corneal damage.

In a 13-week feeding study, rats were fed dietary levels of 0, 40, 200, 1,000 or 5,000 ppm of C12 AS. The only test material related effect observed was an increase in absolute organ weights in the rats fed with the highest concentration which was 5,000 ppm. The organ weights were not further specified and no other abnormalities were found.

In a mutagenicity study, rats were fed 1.13 and 0.56% C12 AS in the diet for 90 days. This treatment did not cause chromosomal aberrations in the bone marrow cells.

Mutagenicity studies with Salmonella typhimurium strains (Ames test) indicate no mutagenic effects of C12 AS). The available long-term studies in experimental animals (rats and mice) are inadequate to evaluate the carcinogenic potential of AS. However, in studies in which animals were administered AS in the diet at levels of

up to 4% AS, there was no indication of increased risk of cancer after oral ingestion.

No specific teratogenic effects were observed in rabbits, rats or mice when pregnant animals were dosed with 0.2, 2.0, 300 and 600 mg C12 AS/kg body weight/day by gavage during the most important period of organogenesis (day 6 to 15 of pregnancy for mice and rats and day 6 to 18 of pregnancy for rabbits). Reduced litter size, high incidence of skeletal abnormalities and foetal loss were observed in mice at 600 mg C12 AS/kg/day, a dose level which also caused severe toxic effects in the parent animals in all three species . An aqueous solution of 2% AS was applied (0.1 ml) once daily to the dorsal skin (2 x 3 cm) of pregnant mice from day 1 to day 17 of gestation. A solution of 20% AS was tested likewise from day 1 to day 10 of gestation. The

mice were killed on days 11 and 18, respectively. A significant decrease in the number of implantations was observed when mice were treated with 20% AS compared to a control group which was dosed with water. No evidence of teratogenic effects was noted.

When aqueous solutions of 2% and 20% AS (0.1 ml) were applied once per day to the dorsal skin (2 x 3 cm) of pregnant ICR/Jc1 mice from day 12 to day 17 of gestation no effects on pregnancy outcome were detected. Treatment with 20% AS resulted in growth retardation of suckling mice, but this effect disappeared after weaning. A 10% AS solution (0.1 ml) was applied twice daily to the dorsal skin (2 x 3 cm) of pregnant ICR/Jc1 mice during the preimplantation period (days 0-3 of gestation). A significant number of embryos collected on day 3 as severely deformed or remained at the morula stage. The number of embryos in the oviducts was significantly greater for the mice dosed with AS as compared to the control mice. No pathological changes were detected in the major organs of the dams.

Section 12 - ECOLOGICAL INFORMATION

Toxic to aquatic organisms.

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

| Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- · Reduction
- · Reuse
- Recycling
- · Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

DO NOT allow wash water from cleaning equipment to enter drains. Collect all wash water for treatment before disposal.

· Recycle wherever possible.

· Consult manufacturer for recycling options or consult Waste Management Authority for disposal if no suitable treatment or disposal facility can be identified.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

sodium octyl sulfate (CAS: 142-31-4) is found on the following regulatory lists;

"Canada Domestic Substances List (DSL)", "OECD Representative List of High Production Volume (HPV) Chemicals", "US Toxic Substances Control Act (TSCA) - Inventory"

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Ingestion may produce health damage*.
- Cumulative effects may result following exposure*.
- Limited evidence of a carcinogenic effect*.
- Eye contact may produce serious damage*.
- Possible respiratory and skin sensitiser*.
- Repeated exposure potentially causes skin dryness and cracking*.
- * (limited evidence).

ND

Substance CAS Suggested codes sodium octyl sulfate 142-31-4

Reasonable care has been taken in the preparation of this information, but the author makes no warranty of merchantability or any other warranty, expressed or implied, with respect to this information. The author makes no representations and assumes no liability for any direct, incidental or consequential damages resulting from its use. For additional technical information please call our toxicology department on +800 CHEMCALL.

 Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
A list of reference resources used to assist the committee may be found at:

www.chemwatch.net/references.

• The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.

Issue Date: Sep-4-2009 Print Date:Nov-11-2010