Ammonium acetate solution, 5M

CANADIAN WHMIS SYMBOLS

EMERGENCY OVERVIEW

RISK

Irritating to eyes, respiratory system and skin. Ingestion may produce health damage*. Cumulative effects may result following exposure*.

* (limited evidence).

POTENTIAL HEALTH EFFECTS

ACUTE HEALTH EFFECTS

SWALLOWED

Accidental ingestion of the material may be damaging to the health of the individual.

■ Large doses of ammonia or injected ammonium salts may produce diarrhoea and may be sufficiently absorbed to produce increased production of urine and systemic poisoning. Symptoms include weakening of facial muscle, tremor, anxiety, reduced muscle and limb control.

EYE

This material can cause eye irritation and damage in some persons.

SKIN

This material can cause inflammation of the skin oncontact in some persons.

The material may accentuate any pre-existing dermatitis condition.

Open cuts, abraded or irritated skin should not be exposed to this material.

• Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.

Mild skin reaction is seen with contact of the vapour of this material on moist skin. High concentrations or direct contact with solutions produces severe pain, a stinging sensation, burns and blisters and possible brown stains. Death could result from extensive burning. Vapour exposure may rarely, produce an itchy rash.

INHALED

The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

■ Not normally a hazard due to non-volatile nature of product.

• The highly irritant properties of ammonia vapour result as the gas dissolves in mucous fluids and forms irritant, even corrosive solutions.

Inhalation of the ammonia fumes causes coughing, vomiting, reddening of lips, mouth, nose, throat and conjunctiva while higher concentrations can cause temporary blindness, restlessness, tightness in the chest, pulmonary oedema (lung damage), weak pulse and cyanosis.

Inhalation of high concentrations of vapour may cause breathing difficulty, tightness in chest, pulmonary oedema and lung damage. Brief exposure to high concentrations > 5000 ppm may cause death due to asphyxiation (suffocation) or fluid in the lungs.

Prolonged or regular minor exposure to the vapour may cause persistent irritation of the eyes, nose and upper respiratory tract. Massive ammonia exposures may produce chronic airway hyperactivity and asthma with associated pulmonary function changes. The average nasal retention of ammonia by human subjects was found to be 83%.

CHRONIC HEALTH EFFECTS

• Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

Prolonged or repeated minor exposure to ammonia gas/vapour may cause long-term irritation to the eyes, nose and upper respiratory tract. Repeated exposure or prolonged contact may produce dermatitis, and conjunctivitis.

Other effects may include ulcerative changes to the mouth and bronchial and gastrointestinal disturbances. Adaptation to usually irritating concentrations may result in tolerance. In animals, repeated exposures to sub-lethal levels produces adverse effects on the respiratory tract, liver, kidneys and spleen. Exposure at 675 ppm for several weeks produced eye irritation in dogs and rabbits; corneal opacity, covering between a quarter to one half of the total surface area, was evident in rabbits.

Repeated minor oral exposure to acetic acid can cause blackening of the skin and teeth, erosion of the teeth, vomiting, diarrhoea, nausea. Repeated minor vapour exposure may cause chronic respiratory inflammation and bronchitis.

It is reported that workers exposed for 7 to 12 years at concentrations of 60 ppm acetic acid, plus one hour daily at 100-260 ppm had no injury except slight irritation of the respiratory tract, stomach, and skin although this report is equivocal as in another study different researchers found conjunctivitis, bronchitis, pharyngitis and erosion of exposed teeth apparently in the same workers.

Occupational exposures for 7-12 years to concentrations of 80-200 ppm, at peaks, caused blackening and hyperkeratosis of the skin and hands, conjunctivitis (but no corneal damage), bronchitis and pharyngitis and erosion of the exposed teeth (incisors and canines). Digestive disorders with heartburn and constipation have been reported at unspecified prolonged exposures.

Section 3 - COMPOSITION / INFORMATION ON INGREDIENTS			
NAME	CAS RN	%	
Ammonium acetate solution, 5M	631-61-8	38.5	
water	7732-18-5	61.5	

Section 4 - FIRST AID MEASURES

SWALLOWED

- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

EYE

If this product comes in contact with the eyes:

- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

SKIN

If skin contact occurs:

- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

INHALED

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

NOTES TO PHYSICIAN

Treat symptomatically.

- For acute or short term repeated exposures to ammonia and its solutions:
- Mild to moderate inhalation exposures produce headache, cough, bronchospasm, nausea, vomiting, pharyngeal and retrosternal
 pain and conjunctivitis. Severe inhalation produces laryngospasm, signs of upper airway obstruction (stridor, hoarseness, difficulty in
 speaking) and, in excessively, high doses, pulmonary oedema.
- Warm humidified air may soothe bronchial irritation.
- Test all patients with conjunctival irritation for corneal abrasion (fluorescein stain, slit lamp exam)
- Dyspneic patients should receive a chest X-ray and arterial blood gases to detect pulmonary oedema.

Section 5 - FIRE FIGHTING MEASURES		
Vapour Pressure (mmHG):	as for water	
Upper Explosive Limit (%):	Not Available	
Specific Gravity (water=1):	1.066	
Lower Explosive Limit (%):	Not Available	

EXTINGUISHING MEDIA

• There is no restriction on the type of extinguisher which may be used.

• Use extinguishing media suitable for surrounding area.

FIRE FIGHTING

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves for fire only.
- Prevent, by any means available, spillage from entering drains or water courses.

- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

GENERAL FIRE HAZARDS/HAZARDOUS COMBUSTIBLE PRODUCTS

- Non combustible.
- Not considered a significant fire risk, however containers may burn.

Decomposition may produce toxic fumes of: nitrogen oxides (NOx).

May emit poisonous fumes.

May emit corrosive fumes.

FIRE INCOMPATIBILITY

Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Section 6 - ACCIDENTAL RELEASE MEASURES

MINOR SPILLS

- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable, labelled container for waste disposal.

MAJOR SPILLS

Chemical Class: bases

For release onto land: recommended sorbents listed in order of priority.

SORBENT TYPE	RANK	APPLICATION	COLLECTION	LIMITATIONS
LAND SPILL - SMALL				
cross-linked polymer - particulate	1	shovel	shovel	R,W,SS
cross-linked polymer - pillow	1	throw	pitchfork	R, DGC, RT
sorbent clay - particulate	2	shovel	shovel	R, I, P
foamed glass - pillow	2	throw	pitchfork	R, P, DGC, RT
expanded minerals - particulate	3	shovel	shovel	R, I, W, P, DGC
foamed glass - particulate LAND SPILL - MEDIUM	4	shovel	shovel	R, W, P, DGC,
cross-linked polymer -particulate	1	blower	skiploader	R,W, SS
sorbent clay - particulate	2	blower	skiploader	R, I, P
expanded mineral - particulate	3	blower	skiploader	R, I,W, P, DGC
cross-linked polymer - pillow	3	throw	skiploader	R, DGC, RT
foamed glass - particulate	4	blower	skiploader	R, W, P, DGC
foamed glass - pillow Legend	4	throw	skiploader	R, P, DGC., RT

DGC: Not effective where ground cover is dense

R; Not reusable

I: Not incinerable

P: Effectiveness reduced when rainy

RT:Not effective where terrain is rugged

SS: Not for use within environmentally sensitive sites

W: Effectiveness reduced when windy

Reference: Sorbents for Liquid Hazardous Substance Cleanup and Control;

R.W Melvold et al: Pollution Technology Review No. 150: Noyes Data Corporation 1988. Moderate hazard.

- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Neutralise/decontaminate residue (see Section 13 for specific agent).
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
- If contamination of drains or waterways occurs, advise emergency services.

Section 7 - HANDLING AND STORAGE

PROCEDURE FOR HANDLING

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storing and handling recommendations.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
- DO NOT allow clothing wet with material to stay in contact with skin

RECOMMENDED STORAGE METHODS

- Polyethylene or polypropylene container.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.
- STORAGE REQUIREMENTS
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storing and handling recommendations.

Section 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

EXPOSURE CONTROLS

The following materials had no OELs on our records

- ammonium acetate: CAS:631-61-8
- water: CAS:7732-18-5

PERSONAL PROTECTION

RESPIRATOR

• Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

EYE

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lens or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

HANDS/FEET

- Wear chemical protective gloves, eg. PVC.
- Wear safety footwear or safety gumboots, eg. Rubber
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Contaminated gloves should be replaced.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

OTHER

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

ENGINEERING CONTROLS

• Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in special circumstances. If risk of overexposure exists, wear approved respirator. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. Provide adequate ventilation in warehouses and enclosed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type o	Contaminant:
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•••••••••••••••••••••••••••••••••••••••

Air Speed:

solvent, vapours, degreasing etc., evaporating from tank (in still air). 0.25-0.5 m/s (50-100 f/min)

aerosols, fumes from pouring operations, intermittent

container filling, low speed conveyer transfers, welding,

spray drift, plating acid fumes, pickling (released at low 0.5-1 m/s (100-200 f/min.)

velocity into zone of active generation)

direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion)	2.5-10 m/s (500-2000 f/min.)
Within each range the appropriate value depends on:	
Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

4: Large hood or large air mass in motion

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Section 9 - PHYSICAL AND CHEMICAL PROPERTIES

PHYSICAL PROPERTIES

Liquid. Mixes with water.			
State	Liquid	Molecular Weight	77.08
Melting Range (°F)	Not Available	Viscosity	Not Available
Boiling Range (°F)	Not Available	Solubility in water (g/L)	Miscible
Flash Point (°F)	Not Available	pH (1% solution)	Not Available
Decomposition Temp (°F)	Not Available	pH (as supplied)	6.2 - 7.5
Autoignition Temp (°F)	Not Available	Vapour Pressure (mmHG)	as for water
Upper Explosive Limit (%)	Not Available	Specific Gravity (water=1)	1.066
Lower Explosive Limit (%)	Not Available	Relative Vapour Density (air=1)	as for water
Volatile Component (%vol)	Not Available	Evaporation Rate	as for water

APPEARANCE

Liquid.

Section 10 - CHEMICAL STABILITY

CONDITIONS CONTRIBUTING TO INSTABILITY

- Presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.
- Presence of heat source

STORAGE INCOMPATIBILITY

• Avoid reaction with oxidising agents

For incompatible materials - refer to Section 7 - Handling and Storage.

Section 11 - TOXICOLOGICAL INFORMATION

Sigma-Aldrich Ammonium Acetate Solution, F. Mo. Biol. 5M

TOXICITY AND IRRITATION

■ unless otherwise specified data extracted from RTECS - Register of Toxic Effects of Chemical Substances. WATER:

SIGMA-ALDRICH AMMONIUM ACETATE SOLUTION, F. MO. BIOL. 5M:

No significant acute toxicological data identified in literature search.

• Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

SIGMA-ALDRICH AMMONIUM ACETATE SOLUTION, F. MO. BIOL. 5M:

AMMONIUM ACETATE:

ΤΟΧΙΟΙΤΥ		IRRITATION	IRRITATION		
Intraperitoneal (rat) LD50:	632 mg/kg	Nil Reported			
Altered sleep time, muscle contr recorded.	action, coma, dyspnae, hypogl	ycemia			
WATER:					
CARCINOGEN					
Ammonium acetate	US EPA Carcinoge	ens Listing	Carcinogenicity		D
	Section 12 - ECC	LOGICAL INFORMATIO	N		
No data					
Ecotoxicity					
Ingredient	Persistence: Water/Soil	Persistence: Air	Bioaccumulation	Mobility	
ammonium acetate	No Data Availa	able No Data Available	LOW		

Section 13 - DISPOSAL CONSIDERATIONS

Disposal Instructions

All waste must be handled in accordance with local, state and federal regulations.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licenced to accept chemical and / or pharmaceutical wastes or incineration in a licenced apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

Section 14 - TRANSPORTATION INFORMATION

NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS: DOT, IATA, IMDG

Section 15 - REGULATORY INFORMATION

Regulations for ingredients

ammonium acetate (CAS: 631-61-8) is found on the following regulatory lists;

"Canada - Alberta Ambient Air Quality Guidelines","Canada - Alberta Ambient Air Quality Objectives","Canada - British Columbia Occupational Exposure Limits", "Canada - Ontario Occupational Exposure Limits", "Canada - Quebec Permissible Exposure Values for Airborne Contaminants (English)","Canada National Pollutant Release Inventory (NPRI)","Canada Substances in Products Regulated Under the Food and Drugs Act (F&DA) That Were In Commerce between January 1, 1987 and September 13, 2001 (English)","Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)","CODEX General Standard for Food Additives (GSFA) - Additives Permitted for Use in Food in General, Unless Otherwise Specified, in Accordance with GMP","OECD List of High Production Volume (HPV) Chemicals","US - California Occupational Safety and Health Regulations (CAL/OSHA) -Hazardous Substances List", "US - California Permissible Exposure Limits for Chemical Contaminants", "US - Delaware Pollutant Discharge Requirements - Reportable Quantities", "US - Massachusetts Oil & Hazardous Material List", "US - Michigan Exposure Limits for Air Contaminants", "US - New Jersey Right to Know Hazardous Substances (English)", "US - Oregon Permissible Exposure Limits (Z-1)","US - Pennsylvania - Hazardous Substance List","US - Tennessee Occupational Exposure Limits - Limits For Air Contaminants", "US - Wyoming Toxic and Hazardous Substances Table Z1 Limits for Air Contaminants", "US Clean Air Act (CAA) National Ambient Air Quality Standards (NAAQS)","US CWA (Clean Water Act) - List of Hazardous Substances", "US CWA (Clean Water Act) - Reportable Quantities of Designated Hazardous Substances", "US Department of Transportation (DOT) List of Hazardous Substances and Reportable Quantities - Hazardous Substances Other Than Radionuclides", "US DOE Temporary Emergency Exposure Limits (TEELs)","US EPA Carcinogens Listing","US EPA High Production Volume Chemicals 1994 List of Additions","US FDA Everything Added to Food in the United States (EAFUS)","US List of Lists - Consolidated List of Chemicals Subject to EPCRA, CERCLA and Section 112(r) of the Clean Air Act","US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory"

water (CAS: 7732-18-5) is found on the following regulatory lists;

"Canada Toxicological Index Service - Workplace Hazardous Materials Information System - WHMIS (English)","IMO IBC Code Chapter 18: List of products to which the Code does not apply","International Fragrance Association (IFRA) Survey: Transparency List","OECD List of High Production Volume (HPV) Chemicals","OSPAR National List of Candidates for Substitution – Norway","US - Pennsylvania -Hazardous Substance List", "US DOE Temporary Emergency Exposure Limits (TEELs)","US FMA Air Freshener Fragrance Ingredient Survey Results", "US NFPA 30B Manufacture and Storage of Aerosol Products - Chemical Heat of Combustion","US Toxic Substances Control Act (TSCA) - Chemical Substance Inventory", "US TSCA Section 8 (a) Inventory Update Rule (IUR) - Partial Exemptions"

No data for Sigma-Aldrich Ammonium Acetate Solution, F. Mo. Biol. 5M (CW: 25-2995)

Section 16 - OTHER INFORMATION

LIMITED EVIDENCE

- Ingestion may produce health damage*.
- Cumulative effects may result following exposure*.
- * (limited evidence).

Denmark Advisory list for selfclassification of dangerous substances

Substance	CAS
ammonium acetate	631- 61- 8

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. A list of reference resources used to assist the committee may be found at: www.chemwatch.net/references

Suggested codes Xn: R22

• The (M)SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

■ For detailed advice on Personal Protective Equipment, refer to the following U.S. Regulations and Standards: OSHA Standards - 29 CFR:

1910.132 - Personal Protective Equipment - General requirements

1910.133 - Eye and face protection 1910.134 - Respiratory Protection 1910.136 - Occupational foot protection 1910.138 - Hand Protection Eye and face protection - ANSI Z87.1 Foot protection - ANSI Z41 Respirators must be NIOSH approved.

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700. <u>www.Chemwatch.net</u>

Issue Date: Feb-14-2011 Print Date:Mar-9-2012